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Chapter 1

Introduction

1.1 Superconductivity and proximity effect

Superconductivity is a physical phenomenon that occurs in many chemical elements,

compounds and alloys. Electrical and magnetic properties of materials in the superconduct-

ing state differ significantly from the same properties in a normal state. The phenomenon of

superconductivity was discovered in 1911 by H. Kammerling-Onnes in his study of the re-

sistance of mercury. He found that when cooled below 4.2 K, mercury’s resistance vanishes

abruptly. Normal state can be restored by applying a sufficiently strong current (greater

than the critical current) across the material or putting it in a sufficiently strong external

magnetic field (greater than the critical magnetic field ).

The first theory, that successfully described phenomenology of the electrodynamics

of superconductors, was the London theory (1935). The Ginzburg-Landau theory (GL

theory), is also a phenomenological theory, but it takes into account the quantum effects

to describe the superconductivity by introducing the effective wave function ( the order

parameter) . Since the GL theory was based on the theory of phase transitions, it is

valid only near the critical temperature of superconductor. In 1956, L. Cooper suggested

the idea of bound electrons, Cooper pairs, which can arise for arbitrarily small attraction

between electrons which are near the Fermi surface. Based on this idea, Bardeen, Cooper

and Schrieffer formulated microscopic theory of superconductivity (the BCS thery). Since

Cooper pairs are bose particles, at a temperature below TC they can accumulate in the

ground state described by a single wave function. Consequently, such condensate can flow

without dissipation. L.P. Gor’kov developed the microscopic theory of superconductivity

further (1958) via application of the method of Green’s functions.

In the last few years investigation of superconductivity was directed on study of su-

perconductors with unconventional pairing mechanisms and Cooper pair symmetry and on

study of hybrid structures with superconductors. There exist many interesting phenomena

in hybrid SN (superconductor-normal metal) structures. Cooper pairs can penetrate into
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normal metal at some distance which in the diffusive case (i.e. when electron scattering

mean free path is small) is proportional to (DN

T )1/2, where DN is the electronic diffusion

coefficient. So, superconducting properties can be induced near the interface on this length

scale. This effect is called the proximity effect. In hybrid structures which consist of two su-

perconductors that are connected via a weak link region (dielectric material, normal metal,

constriction) there is, a so called, Josephson effect: the current flows through the junction

without dissipation if the current is smaller than the critical value, IC . This supercon-

ducting current, IS, is 2π-periodic function of the phase difference ϕ of wave functions of

superconducting electrodes and for the simplest case is given by IS = IC sin(ϕ).

There is a considerable interest in Josephson structures containing ferromagnetic

materials in their weak link region [1]- [4]. The proximity effect in SF structures leads to

the penetration of superconducting correlations into ferromagnetic metal to a length of the

order (DF

H )1/2 in the diffusive case, where H is exchange energy of ferromagnetic material.

Unlike SN structures, in SF structures these correlations are not only attenuated on

the coherence length, but also oscillate as a function of the thickness of the ferromagnetic

layer. Such behavior of the wave function can be qualitatively explained as follows. Cooper

pair, consisting of electrons with opposite momenta and spins penetrates through the SF

interface into the ferromagnet. In the presence of exchange field H in a ferromagnetic

material, electrons with spins oriented along the field decrease their energy by H, and

electrons with spins directed against the field, increase their energy by H. Therefore, in the

presence of an exchange field the Cooper pairs have a non-zero momentum, which leads to

oscillation of the wave function in ferromagnet (see Fig.1) [5]. This phenomenon is similar

to the Fulde-Ferrel-Larkin-Ovchinnikov oscillations in magnetic superconductors [6], [7].

Due to the oscillating character of the wave function, the critical temperature of a

structures containing a ferromagnetic layers behaves nonmonotonicaly [8] - [11]. For the

same reason the critical current IC in SFS junctions oscillates as a function of the thickness

of ferromagnetic layer. The junction changes the states with positive values of the IC to

the states with negative values of critical current ( 0−π-transition). This phenomenon was

predicted theoretically in [12] for Josephson junctions with magnetic impurities within the

dielectric layer and in [13] - [14] for SFS junctions in the clean and dirty limits. The first

experimental evidences were found in [15] - [18] .

To study the proximity effect in SF structures, one can use the methods of quantum

field theory [19] - [24]. The structure can be described in terms of Green’s functions that
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Figure 1.1. Proximity effect in SN structure, SF structure with uniform magnetization and
SF structure with nonuniform magnetization.

satisfy the Gor’kov equation. In metals with high concentration of impurities, mean free

path is small compared with all other lengt scales (dirty limit). In this case, the Green’s

functions in the first approximation are isotropic, allowing us to use the Usadel equation [25]

for Green’s functions averaged over the Fermi surface. In the stationary and equilibrium

case these equations have the following form

D∂r(g∂rg) − ωn[k̂0τ̂3σ̂0, g] − i[k̂0h, g] − i[∆k̂0τ̂2σ̂3, g] = 0,

where g is an 8×8 matrix in Keldysh×Nambu×Spin space, k̂i, τ̂i, σ̂i are Pauli matrixes (i =

0, 1, 2, 3), D = vl/3 - is the diffusion coefficient (v is the velocity at the Fermi surface and l is

the mean free path), ωn = πT (2n+1) is the Matsubara frequencies ( n = 0,±1,±2...), ∆ is

the pair potential (it is nonzero for superconductors and is zero for other materials). Matrix

h describes ferromagnetic properties in Usadel equation. For example, if the ferromagnet
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has monodomain structure and its magnetization vector lies in the (y, z) plane then

h = H(τ̂3σ̂3 cosα + τ̂0σ̂2 sinα),

where H is exchange energy of ferromagnetic material.

Matrix g in the Keldysh space can be represented as

g =



 GR GK

0 GA



 ,

where GR, GA, GKare retarded, advanced and Keldysh parts correspondingly. There is also

a normalization condition

g2 = 1,

from which one can obtain that retarded, advanced and Keldysh Green’s functions are

connected via the expression

GK = GRf̂ − f̂GA,

where f̂ is the matrix distribution function, therefore one can content oneself with only the

retarded part of matrix g.

In the Nambu space, the retarded part can be represented as follows:

GR = G + F = τ̂3g
R + τ̂0g

Rt + iτ̂2f
R + iτ̂1f

Rt, GR =



 gR + gRt fR + ifRt

−fR + ifRt −gR + gRt



 .

In the spin space we have

fR = σ3f3 + σ0f0, f
R =



 f0 + f3 0

0 f0 − f3



 , fRt = σ1f1,

gR = σ0g0 + σ3g3, g
R =



 g0 + g3 0

0 g0 − g3



 , gRt = σ2g2,

where f3,g0 are singlet Green’s functions, f0,g3 are triplet Green’s functions with zero pro-

jection of spin, and f1, g2 are triplet functions for correlations with nonzero spin projection.

Usadel equations must be supplemented by boundary conditions obtained in [26]

γξ1g1
∂g1

∂r
= ξ2g2

∂g2

∂r
,
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γBξ1g1
∂g1

∂r
= [g1, g2],

interconnecting functions on atomically sharp interfaces of materials. Parameters γ =

ρ2ξ2
ρ1ξ1

, γB = RBAB

ρ1ξ1
are the suppression parameters at the SF interface. Here ξ1,2, ρ1,2 are the

coherence lengths and resistivities of the first and second metals respectively, RB, AB are

the resistance and the area of interface. Applicability of these equations and boundary

conditions is justified, if the value of the exchange energy is much smaller than the Fermi

energy.

For several cases, the so-called, Φ parametrization is useful. In this parametrization,

Green’s functions G and F can be represented as follows

G =
ω̃n√

ω̃n
2 + ΦΦ∗

−ωn

, F =
Φ

√
ω̃n

2 + ΦΦ∗
−ωn

,

where ω̃ = ω + iH . In this parametrization Φ = ∆ in a bulk superconductor and the

normalization condition is automatically fulfiled thus decreasing the number of equations.

1.2 Motivation

The existence of the oscillatory dependence of the critical current on the distance

between superconducting electrodes has been reliably confirmed in a number of experiments

using a variety of ferromagnetic materials and types of Josephson junctions [27] - [42]. Use

of π transitions, for which the critical current has a negative value, has been discussed in [43]

- [47] for the implementation of qubits and for superconducting electronics. However, these

structures have some significant drawbacks, limiting their application.

The first of them is the small magnetude of the characteristic scale penetration of

superconductivity in a ferromagnet. Indeed, analysis of existing experimental data [27] - [42]

shows that the value of the exchange energy, H , in ferromagnetic materials scales between

850 K ÷ 2300 K. Such large values of H lead to effective decay length, ξF1 ≈ 1.2÷ 4.6 nm,

and period of oscillations, ξF2 ≈ 0.3 ÷ 2 nm, of thickness dependence of a SFS junction

critical current, IC . These values turned out to be much smaller compared to the decay

length, ξN ≈ 10 ÷ 100 nm, in similar SNS structures. This fact makes it difficult to

fabricate SFS junctions with reproducible parameters. It also leads to suppression of the

ICRN product thus limiting the cutoff frequency of the junctions. Since a search of exotic

ferromagnetic materials with smaller value of H is a challenging problem [42], one has to

seek for another solutions.
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One possible way to increase the decay length in a ferromagnetic barrier is the use of

the long-range proximity effect due to induced spin-triplet superconductivity [2], [77], [58]-

[60] in structures with nonuniform magnetization. If magnetization of a ferromagnetic

barrier is homogeneous, then only the singlet component and triplet component, with pro-

jection Sz = 0, of the total Cooper-pair spin are induced in the F region. These super-

conducting correlations are short-ranged, i.e. they extend into the F layer over a short

distance of the order of ξF1 =
√

DF/H in the diffusive case. However, in the case of

inhomogeneous magnetization, e.g. in the presence of magnetic domain walls or a SF

multilayer with noncollinear directions of magnetization of different F layers, a long-range

triplet component (LRTC) with Sz = ±1 may appear (see Fig.1). It decays into F region

over distance ξF =
√

DF /2πTC (here TC is the critical temperature of the S layer), which is

a factor
√

H/2πTc larger than ξF1. The latter property might lead to the long-range effects

observed in some experiments [62], [63], [64]- [68].

The transformation of decay length from ξF1 to ξF might also take place in the vicin-

ity of a domain wall even without generation of an odd triplet component [79] - [87]. This

enhancement depends on an effective exchange field which is determined by the thicknesses

and exchange fields of the neighboring domains. If a sharp domain wall is parallel [83], [86]

or perpendicular to the SF interface [87] and the thickness of ferromagnetic layers, df ! ξF1,

then for the antiparallel direction of magnetization the exchange field effectively averages

out, and the decay length of superconducting correlations becomes close to that of a single

nonmagnetic N metal ξF =
√

DF/2πTC . It should be mentioned that for typical ferro-

magnetic materials ξF is still small compared to the decay length (ξN " 100 nm ) of high

conductivity metals such as Au, Cu or Ag. This difference can be understood if one takes

into account at least two factors. First, typical values of Fermi velocities in ferromagnetic

materials (see e.g. the analysis of experimental data done in [39], [40]) are of the order of

2 × 105 m/s, about an order of magnitude smaller than in high conductivity metals. The

second factor is the rather small electron mean free path in ferromagnets, especially alloys

like CuNi, PtNi, etc.

The second disadvantage of the existing SFS structures lies in the difficulty in orga-

nizing the control of the magnitude of the critical current. Control of the critical current

of SFS junctions can be achieved by changing the direction of the magnetization vectors

of the ferromagnetic layers. Such management has much in common with the giant mag-

netoresistance effect [48] - [49]. The possibility of such a control in SFS junctions having
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different complexities of weal link region has been intensively discussed earlier. The first

group of suggestions was concentrated on tunnel SFIFS Josephson junctions which consist

of SF sandwiches separated by dielectric (I) layer [59], [50]- [54]. It was shown that switch-

ing from parallel to antiparallel direction of F layer magnetization vectors may result in

enhancement of critical current of these devices as well as in transition from zero to π states.

However, practical realization of this switching is complex task, which is difficult to imple-

ment. The next class of SFS junctions exploits the idea of interplay between singlet and

odd triplet superconducting components inside a Josephson structure [58], [60], [55]- [57].

In SFSF devices [60], where one of the F films is screened from the external magnetic field

by a superconducting electrode a change of direction of the upper F layer magnetization

can be more easily realized than in junctions having two or more F layers between super-

conducting banks. Unfortunately, to implement the effective IC modulation it is necessary

to fit two alternative conditions. On one hand, thickness of the S layer in the FSF part of

the structure must be large enough in order to have a reasonable critical temperature [88].

On the other hand, to provide the connectedness of the magnetization directions of the

F films, which is a necessary condition for generation of the odd triplet component, this

thickness must be small. Similar problems occur in realization of FSF spin valve devices

(see e.g. [89]). Recently, the possibility of experimental realization of deflection of the

magnetization direction of one of F layers from the initial antiferromagnetic configuration

of F films has been demonstrated in spin valve structure designed to control the critical

temperature of superconducting film [89].

In this work, research focused on finding solutions to eliminate the above-stated

deficiencies in SFS Josephson junctions with traditional geometry. To this end, new types

of SFS Josephson junctions were suggested in which the weak links are composed from

NF, or FNF multilayer structure. This work aimed at carrying out theoretical studies of

processes in these structures and proof of the fundamental features, such as extending the

period of oscillation and the scale of the decay of the critical current to values of about ξN ,

and organization of effective control of the magnitude Ic

1.3 Contents of Chapters

In Chapter 2, S-FN-S Josephson junctions are discussed. These junctions are made

of two massive superconducting electrodes, connected by an NF bilayer. It is assumed that
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supercurrent flows in the direction parallel to the FN-boundaries of composite weak-link

region.

In section 2.1, S-FN-S structures are described in the framework of the quasiclassical

Usadel equations in the limit of thin ferromagnetic and normal layers. The assumption

of small layer thickness significantly simplifies the problem and gives possibility to find

analytical expressions for the Green’s functions. From these expressions an expression for

the critical current of the structure is obtained. The critical current is expressed as the sum

of two terms, which correspond to one of its wave vectors.

In section 2.2, the analysis of the wave vectors and the critical current obtained in

section 2.1 is performed for a number of limiting cases. It is shown that in the limit of large

resistance of the FN boundary the films are practically independent and the critical current

flows through two independent channels. In the ferromagnetic film there is a slight increase

in the scale of the damping and period of oscillations of the critical current, and in the

normal film oscillations appear, but with a much greater period ξN . In the limit of small

resistance of the FN boundary two cases are considered: highly conducting ferromagnet

and highly conducting normal metal. In the first case, the structure is similar to an SFS

junction, where critical current decays very sharply, while in the latter case one of the wave

vectors can produce oscillations of the critical current with period and scale of decay of

the order of ξN . Thus, in Chapter 2 it is proved that in S-FN-S structure the scale of

the damping and the oscillation period of the critical current can be significantly increased

compared with the same parameters for the SFS junction, since the use of a FN structure

as a material of weak region reduces the effective exchange energy of the ferromagnetic film.

In Chapter 3, the S-FNF-S Josephson junction is considered. Such junction consists

of two massive superconducting electrodes, connected by an FNF trilayer. In this chapter

the possibility of controlling the critical current in the Josephson junctions is discussed. The

direction of magnetization of one of the F-layers can be fixed using an antiferromagnetic

substrate. It is assumed that the magnetization vector of the other F layer can vary both

in magnitude and in sign, being collinear with the first.

In section 3.1, the approach is described to study S-FNF-S junctios in the framework

of the quasiclassical Usadel equations in the limit of thin ferromagnetic and normal films.

Under the assumption of thin layers, the analytical expressions for the Green’s functions

are obtained, through which an expression for the critical current of the structure can be

found. The critical current can be expressed as the sum of three terms with corresponding
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wave vectors.

Section 3.2 presents analysis of the wave vectors and critical current for a number

of limiting cases. It is shown that for equal values of magnetizations, both the sign and

the absolute value of the critical current of the structure are analogous to that considered

in Chapter 1. In the limit of large resistance of the FN interface the films are practically

independent. In the limit of high conducting film the two wave vectors are equal to the

partial wave vectors of ferromagnetic films, while the third wave vector describes the os-

cillations of the critical current with period and the scale of the decay on the order of ξN .

Furthermore, it is shown that for a strictly antiparallel orientation of magnetizations the

average exchange energy is zero, so the critical current does not oscillate. Also, there are no

oscillations of critical current at the some value of the exchange energy of one of the ferro-

magnetic layers. The critical current is always positive at equal in magnitude and opposite

in direction magnetizations. Therefore, when switching the magnetization from parallel to

antiparallel configuration, the critical current can remain zero state or change the sign. The

critical current can also significantly change its value. The maximum absolute value of the

critical current is achieved for unequal magnetizations in the 0 state and the π state. Thus,

in Chapter 3 it is proven that the S-FNF-S junction is useful for the control of both the

value and sign of the critical current, while maintaining advantages of S-FN-S structures.

In Chapter 4, the S-FNF-S Josephson junction is considered in the general case when

the magnetization vectors of the F layers are noncollinear. The possibility of the critical

current control by rotation of magnetization vectors is discussed. At angle α $= 0, π in

addition to the singlet 〈ψ↑ψ↓〉 + 〈ψ↓ψ↑〉 and triplet 〈ψ↑ψ↓〉 − 〈ψ↓ψ↑〉 〉 components also the

equal spin triplet components 〈ψ↑ψ↑〉 and 〈ψ↓ψ↓〉 arise, which also contribute to the critical

current. Chapter 4 shows how these triplet correlations affect the critical current of the

structure.

In section 4.1, an approach to the description of the S-FNF-S junctions is developed

in the framework of the quasiclassical Usadel equations in the matrix form. The regime

of thin ferromagnetic and normal layers is discussed. It is then shown how components of

the matrix condensate functions can be obtained in the presence of triplet superconducting

correlations.

In section 4.2, it is shown that the expression for the Green’s functions obtained in

Section 4.1 can be significantly simplified in limit of high conducting normal film. In this

case, the analytical expressions for the critical transition current and wave vectors structure
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is obtained.

In section 4.3, we analyse the wave vectors for the limiting case corresponding to

the high conducting normal film. It is shown that taking into account the triplet compo-

nent with nonzero projection leads to a noticeable change in behavior of the wave vectors

depending on the misorientation angle of the magnetization vectors. Also, the period of

oscillations tends to infinity at not strictly antiparallel orientation of the magnetization

vector, but at some misorientation angle.

In Section 4.4, the critical current of the structure is analyzed for the same limiting

case . It is shown that taking into account the triplet component with nonzero spin projec-

tion leads to the transition from 0 to π state at some misorientation angle rather than at

strictly parallel orientation of the magnetizations. It is proven that when the misorientation

angle is larger then some critical one, a new type of π state is possible in the structure.

This state is due to superposition of nonoscillatory contributions. The distance between

superconducting electrodes at which the 0 − π transition can be realized, depends on the

misorienation angle α, and this distance tends to infinity at antiparallel magnetizations.

Thus, in Chapter 4 it is proven that the control of critical current is possible in S-FNF-S

junction at small angles, and the existence of a new π state is demonstrated.

In Chapter 5, properties of S-FN-S Josephson junctions with arbitrary thickness of

the F and N films in the weak link region are theoretically investigated.

In Section 5.1, an approach to study of S-FN-S junction is developed in the frame-

work of the quasiclassical Usadel equations for an arbitrary thickness of the ferromagnetic

and normal films.

In Section 5.2, it is shown that taking into account the finite thickness of the films

leads to an infinite number of wave vectors. Therefore, the critical current is the sum of

an infinite number of terms. It is shown that the expression for the critical current is

simplified in the case for which the main contribution to the current is yielded by terms

corresponding to the minimum wave vectors. The limitations on the thickness of normal

film for such assumption are defined. It is shown that the expression for the critical current

has the same structure as previously obtained in Chapter 1 and differs from it only by wave

vector.

In Section 5.3, the analysis of the wave vectors is performed. It is shown that since

the structure of the expression for the critical current remains the same, the results obtained

in the previous chapters are qualitatively correct not just for the approximation of small film

12



thicknesses, but in the general case. It is shown that for thicknesses of the ferromagnetic

film larger than ξF , wave vectors become almost independent of this thickness.

In Section 5.4, the behavior of the critical current is analyzed. For thickness of a

ferromagnet much larger than its coherence length, one can define critical distances Ln

when IC changes sign. It is shown that for thickness of a ferromagnet comparable to the

coherence length, strong variations of IC occur as a function of the F film thickness, if the

distance between superconducting electrodes L is close to Ln. Beyond these narrow critical

areas the sign and the period of the critical current do not depend on the thickness of the

F film if the thickness is large than ξF .

In Chapter 6, Josephson effect in S-FN-S Josephson junctions with different types

of weak link reagion is investigated:

- SN-NF-NS structure, which consists of two SN electrodes connected by an NF

weak region.

- SNF-N-FNS structure, in which a N film connects SNF multilayer electrodes.

- SNF-NF-FNS structure, in which the S electrodes are located on top of the FN

structure.

In Section 6.1, an approach to the description of these three types of junctions is

developed in the framework of the quasiclassical Usadel equations with different boundary

conditions.

In Section 6.2, there is analytical argumentations of advantage of ramp type geom-

etry for simple SNS structure in the case of small transparency of SN interface.

In Section 6.3, critical current for these three ramp type geometries is calculated.

The phase diagrams in (L, d) plane are analyzed where 0 and π states are saparated by the

lines with zero IC .
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Chapter 2

Effective Decrease in the Exchange Energy in

S–(FN)–S Josephson Structures

Introduction

Experimental corroboration [1] of the existence of π contacts in SFS Josephson

junctions (S is a superconductor and F is a ferromagnet) stimulated experimental and

theoretical investigations of the processes in the SF structures [2–4]. At present, significant

efforts are focused on seeking ferromagnetic materials that would allow the manufacture of

SFS junctions applicable in various low-power devices. Analysis of the existing experimental

data [5–20] shows that the exchange energy H in available ferromagnetic materials lies in a

range from 850 to 2300 K. Owing to such high H values, the typical penetration length of

superconducting correlations,ξ = ξF1 + iξF2, induced in a ferromagnet due to the proximity

effect is equal to several nanometers (ξF1 ≈ 1.2–4.6 nm,). These values are much smaller

than the typical lengths ξN ≈ 10–100 nm of the superconductivity penetration into a

normal metal (N). These lengths (ξF1 and ξF2) determine the typical scale of decreasing

the critical current IC of the SFS junctions with an increase in the interelectrode distance

L and oscillation period IC(L). Such small ξF1 and ξF2 values significantly complicate

the technology of manufacturing the SFS junctions with reproducible parameters and lead

to the degradation of the high-frequency properties of such junctions. The probability

of finding a technological F material whose H value is an order of magnitude smaller is

relatively low [20]. This fact stimulates the search for other solutions to this problem. One

of them is an “effective” decrease in H in the composite NF structures. In this work, it is

shown that this effect exists and can lead to an increase in the effective ξF1 and ξF2 values

to the scale of ξN lengths.

In this Chapter the critical current Ic of S–(FN)–S Josephson structures has been

calculated as a function of the distance L between superconducting (S) electrodes using the

Usadel quasiclassical equations for the case of specifying the supercurrent in the direction

parallel to the interface between the ferromagnetic (F) and normal (N) films of the composite
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weak-link region. It has been shown that, owing to the interaction between F and N films,

both the typical decrease scale IC(L) and the period of the critical current oscillations can

be much larger than the respective quantities for the SFS junctions. The conditions have

been determined under which these lengths are on the order of the effective depth ξN of

superconductivity penetration to a normal metal.

2.1 Structure of S-FN-S junction and its mathematical

description

In this Chapter S-FN-S Josephson junction (Fig. 2.1) is considered, that consists of

two massive superconducting electrodes connected to each other by a bilayer NF structure.

The width of F layer is dFand of N layer is dN . It is suggested that the “dirty” limit

conditions are satisfied in the N and F materials, and exchange energy H = 0 in the normal

metal and Magnetization vector is perpendicular to SF interface in F film. The origin of the

coordinate system is in the middle of the structure and the x and y axes are perpendicular

and parallel to the NF interface, respectively (Fig. 2.1).

Figure 2.1. Structure of S-FN-S Josephson junction.

It is suggested that the structure is completely symmetric and the suppression pa-

rameters γBN = RB1AB1/ρNξN and γBF = RB2AB2/ρF ξF characterizing the NS and FS

interfaces, respectively, are large

γBN ' max

{
1,
ρSξS
ρNξN

}
, γBF ' max

{
1,
ρSξS
ρF ξF

}
,

so that the suppression of superconductivity in S electrodes can be disregarded. Here,

RB1, RB2 and AB1,AB2 - are the resistance and area of the SN (SF) interface, respec-

tively, ρS, ρF , ρN and ξS = (DS/2πTC)1/2, ξF = (DF/2πTC)1/2, ξN = (DN/2πTC)1/2 are
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the resistivities and coherence lengths of the materials, respectively; DS,N,F - are the dif-

fusion coefficients of the respective materials; and , TC - is the critical temperature of the

superconducting electrodes.

Under the above assumptions, it can be suggested that the Green’s functions GS and

ΦS in superconducting electrodes are equal to their equilibrium values GS = ω/
√
ω2 + ∆2,

ΦS = ∆exp {±iϕ/2}, where ∆ and ϕ -are the absolute value and phase difference of the

order parameters of the superconducting electrodes. The properties of the weak-link region

can be described by using the linearized Usadel equation [17]. In the Φ - parameterization,

they are represented in the form [18]:

ξ2
N

{
∂2

∂x2
+

∂2

∂y2

}
ΦN −

|ω|
πTc

ΦN = 0, (2.1)

ξ2
F

{
∂2

∂x2
+

∂2

∂y2

}
ΦF −

ω̃

πTc
ΦF = 0, (2.2)

where ω = Tπ(2n + 1) -are the Matsubara frequencies and (n = 0,±1,±2...), ω̃ = |ω| +

iH sgnω . The boundary conditions at the SN and SF interfaces (for y = ±L/2) have the

form [18], [30]

γBNξN
∂

∂y
ΦN = ±GS∆exp {±iϕ/2} , (2.3)

γBF ξF
∂

∂y
ΦF = ±

ω̃

|ω|
GS∆exp {±iϕ/2} . (2.4)

The boundary conditions at the FN interface (for x = 0) have the form [18], [30]:

ξN
|ω|

∂

∂x
ΦN = γ

ξF
ω̃

∂

∂x
ΦF , (2.5)

γBξF
∂

∂x
ΦF + ΦF =

ω̃

|ω|
ΦN , (2.6)

γB = RB3AB3/ρF ξF , γ = ρNξN/ρF ξF ,

where RB3 and AB3 - are the resistance and area of the NF interface, respectively. The

conditions at the free boundaries of the weak-link region at x = dN and x = −dF reduce

to the equations
∂ΦF

∂x
= 0,

∂ΦN

∂x
= 0, (2.7)

which ensure the absence of the current through these boundaries.

For further simplification of the problem, the thicknesses of the F and N films are

assumed to be sufficiently small:

dN ) ξN , dF ) ξF . (2.8)
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and the solution of the boundary value problem given by (5.1)-(2.7) is sought in the form

of the expansion in small parameters (dN/ξN) and (dF/ξF ). In the first approximation, the

functions ΦN and ΦF

ΦN(x, y) = A(y),ΦF (x, y) = B(y) (2.9)

are independent of the coordinate x. In the next approximation, taking into account (2.7)

we arrive at the expressions

ΦN = A(y) +

{
|ω|

πTcξ2
N

A(y) −
∂2

∂y2
A(y)

}
(x − dN)2

2
, (2.10)

ΦF = B(y) +

{
ω̃

πTcξ2
F

B(y) −
∂2

∂y2
B(y)

}
(x + dF )2

2
. (2.11)

The substitution of (2.10), (2.11) into boundary conditions (2.5), (2.6) yields the following

system of two equations for the functions A(y) and B(y):

[
ζ2
F

∂2

∂y2
− (γF

ω̃

πTc
+ 1)

]
B(y) +

ω̃

|ω|
A(y) = 0, (2.12)

B(y)
|ω|
ω̃

+

[
ζ2
N

∂2

∂y2
− (γN

|ω|
πTc

+ 1)

]
A(y) = 0, (2.13)

where

ζF =
√
γF ξF , ζN =

√
γNξN , (2.14)

γF = γB
dF

ξF
, γN =

γB

γ

dN

ξN
. (2.15)

The solution of this system of equations is represented in the form

A(y) = A1 cosh q1y + A2 sinh q1y + A3 cosh q2y + A4 sinh q2y,

B(y) = B1 cosh q1y + B2 sinh q1y + B3 cosh q2y + B4 sinh q2y,

where coefficients are related as follows:

B1 = −
1

ζ2
F

β
ω̃

|ω|
A1, B2 = −

1

ζ2
F

β
ω̃

|ω|
A2, (2.16)

B3 = ζ2
N

1

β

ω̃

|ω|
A3, B4 = ζ2

N

1

β

ω̃

|ω|
A4,

Here, q1 and q2 are the roots of the characteristic equation

q2
1,2 =

1

2

[
u2 + v2 ±

√
(u2 − v2)2 + 4ζ−2

F ζ−2
N

]
, (2.17)

u2 =
1

ζ2
N

+
Ω

ξ2
N

, v2 =
1

ζ2
F

+
Ω

ξ2
F

+ i
h

ξ2
F

, (2.18)
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and parameter β is:

β =
2[

u2 − v2 +
√

(u2 − v2)2 + 4ζ−2
F ζ−2

N

] , (2.19)

and Ω = |ω| \πTC , Ω̃ = ω̃\πTC , h = H/πTC sgn(ω).

The integration constants A1, A2, A3, A4 are determined from boundary conditions

(2.3), (2.4):

A1 =
1 − sβ ξNξF ζ

−2
N

γBN(1 + κ2)

GS∆sin(ϕ/2)

ξNq1 cosh q1
L
2

, (2.20)

A2 = i
1 − sβ ξNξF ζ

−2
N

γBN (1 + κ2)

GS∆cos(ϕ/2)

ξNq1 sinh q1
L
2

, (2.21)

A3 =
1 + β ξF

ξN ζ2F s

γBF (1 + κ2)

GS∆cos(ϕ/2)

ξF q2 sinh q2
L
2

, (2.22)

A2 = i
1 + β ξF

ξN ζ2F s

γBF (1 + κ2)

GS∆sin(ϕ/2)

ξF q2 cosh q2
L
2

, (2.23)

Here s = γBN/γBF , κ = β(ζF ζN)−1.

The substitution of the solution obtained in the form of into the expression JS for

the superconducting current

JS =
iπTAB2

2eρF

∞∑

ω=−∞

1

ω̃2

[
Bω

∂

∂y
B∗

−ω − B∗
−ω

∂

∂y
Bω

]
+

+
iπTAB1

2eρN

∞∑

ω=−∞

1

ω2

[
Aω

∂

∂y
A∗

−ω − A∗
−ω

∂

∂y
Aω

]
(2.24)

yields the sinusoidal dependence JS = IC sinϕ. It is convenient to represent the critical

current IC = IC1 + IC2 as the sum of two terms:

IC2 =
2πT

eRBF γBF
Re

∞∑

ω>0

G2
S∆

2ω−2(1 + βs−1 ξF
ξN ζ2F

)2

(1 + κ2) ξF q2 sinh Lq2
, (2.25)

IC1 =
2πT

eRBNγBN
Re

∞∑

ω>0

G2
S∆

2ω−2(1 − βs ξN
ξF ζ2N

)2

(1 + κ2) ξNq1 sinh Lq1
. (2.26)

Expressions (6.47)-(2.19), (5.12), (2.26) specify a general expression for the criti-

cal current of the S–(FN)–S Josephson junctions under investigation. According to these

relations, by complete analogy with oscillatory systems with two degrees of freedom, the

S–(FN)–S structure under consideration can be characterized in terms of the partial coher-

ence lengths u, v and the proper coherence lengths

q1 = ξ−1
11 + iξ−1

21 , q2 = ξ−1
12 + iξ−1

22 (2.27)
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The parameters ζ−1
F and ζ−1

N are the coupling constants. It is easy to see that the amplitude

distribution coefficients at the proper coherence lengths, which are proportional to β are

determined only by the material constants of the structure and are independent of the

boundary conditions at the SN and SF interfaces, respectively. The way of current injection

in the weak- link region (through the ratio γBN/γBF ) is taken into account in (6.45)-(2.23),

(5.12), (2.26) by the coefficient s, and the subsequent redistribution of the injected current

between the F and N films is determined by the ratio γF/γN . The approach developed

above is applicable when the all characteristic lengths in the problem are much larger than

the thicknesses of the normal and ferromagnetic films:

ξ11, ξ21 ξ12, ξ22 ' dF , dN . (2.28)

2.2 Analysis of inverse coherence lengths and critical

current

Analysis of expressions (5.12), (2.26) for the critical current components and inverse

coherence lengths are simplified for a number of limiting cases.

2.2.1 The limit of a high resistance of the FN weak-link interface

In the limit of a high resistance of the FN weak-link interface

ζN ' ξN , ζF ' ξF (2.29)

the coupling constants between the F and N films are small. In the first approximation in

ζ−1
N and ζ−1

F , the supercurrent in the structure flows through two independent channels

and formulas for IC1 and IC2 are transformed to the expressions for the critical currents

[18], [24], [31], that were previously obtained for two-barrier SIFIS and SINIS junctions:

eRB2IC2

2πTC
=

T

γBF TC

∞∑

ω>0

Re

{
G2

S∆
2

ω2ξF q2 sinh Lq2

}
, (2.30)

eRB1IC1

2πTC
=

T

γBNTC

∞∑

ω>0

G2
S∆

2

ω2ξNq1 sinh Lq1
, (2.31)

where

q2
2 = q2

20 =
Ω

ξ2
F

+ i
h

ξ2
F

, q2
1 = q2

10 =
Ω

ξ2
N

. (2.32)
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In the next approximation, the proper inverse coherence lengths are easily expressed

as

q2
1 = q2

10 +
1

ζ2
N

+
ξ2
F (Ω + ih)

ζ2
F ζ

2
N (h2 + Ω2)

, (2.33)

q2
2 = q2

20 +
1

ζ2
F

−
ξ2
F (Ω + ih)

ζ2
F ζ

2
N (h2 + Ω2)

. (2.34)

According to (2.33), (2.34)the proximity effect between the N and F films leads to a small

decrease in the effective exchange energy in the F film. The physical meaning of these

changes is obvious. An electron for a certain time can be in the N part of the FN film of

the structure. This is equivalent to the subjection of electrons to the effective exchange

energy averaged over the thickness of the FN film, which is obviously lower than the ex-

change energy in the ferromagnetic part of the structure. Changes in the damping of the

superconductivity in the N film are more significant. In this case, the exponential decrease

law changes to damping oscillations. However, their period in this approximation is much

larger than ξN

Λ = 4πξN

√
Ωζ2

F ζ
2
N (h2 + Ω2)

ξ2
Nξ

2
Fh

' ξN , (2.35)

It increases infinitely for h → 0 and is proportional to h for h ' Ω. This means that

the term IC2 in this case in the expression for the critical current is negligibly small and

IC ≈ IC1. In contrast to similar SNS junctions without F films, the dependence IC1(L)

has the form of damping oscillations. This effect is a consequence of the double proximity

effect, because the superposition between the superconducting correlations induced from

superconductors and spin ordering from the ferromagnet occurs in the N film. However,

the oscillation period is very large; for this reason, the experimental observation of the

transition to the π-state is complicated in the case considered above.

2.2.2 The limit of small resistance of the FN weak-link interface

In the opposite limiting case ζF ) ξF and ζN ) ξN , strong coupling between the

F and N films occurs in the weak-link region. In this case, the inverse proper coherence

lengths are easily obtained in the form

q1+θ(ζN−ζF ) =

√
ζ2
N + ζ2

F

ζNζF
+

ΩζNζF
2(ζ2

F + ζ2
N)3/2

(
ζ2
F

ξ2
N

+
ζ2
N

ξ2
F

+ ih
ζ2
N

ξ2
F

)
, (2.36)

q2−θ(ζN−ζF ) =
1

√
ζ2
N + ζ2

F

√(
ζ2
F

ξ2
F

+
ζ2
N

ξ2
N

)
Ω + ih

ζ2
F

ξ2
F

, (2.37)

26



where θ - Hevecide function. From (2.36), (2.37) it follows that the ferromagnetic film in

the limit ζF ' ζN additionally suppresses superconductivity induced in the N region, so

that

q1 =
1

ζN
+

ΩζN
2ζ2

F

(
ζ2
F

ξ2
N

+
ζ2
N

ξ2
F

)
+ ih

Ωζ3
N

2ζ2
F ξ

2
F

, (2.38)

q2 =

√
Ω + ih

ξ2
F

+
ζ2
NΩ

ζ2
F ξ

2
N

. (2.39)

It is seen that the coherence length and oscillation period of the term IC2 in this case

coincides in the first approximation with the respective quantities for the SFS junctions,

whereas the term IC in IC1 damps at lengths (Re(q1))−1 ≈ ζN ) ξN .

In the limit ζN ' ζF the processes in the N film are determining, so that

q2 =
1

ζF
+

ΩζF
2ξ2

F

+ ih
ΩζF
2ξ2

F

, (2.40)

q1 =

√
Ω

ξ2
N

(
1 +

ζ2
F ξ

2
N

ζ2
Nξ

2
F

)
+ i

h

ξ2
F

ζ2
F

ζ2
N

. (2.41)

Figure 2.2. Real and imaginary parts of inverse coherence length q2 versus the parameter
z = (ζN/ζF )2 at ξN/ζN = 4, ξN/ξF = 10, T = 0.5TC , and h = 20, 30, 40.
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Figure 2.3. Real and imaginary parts of inverse coherence length q1 versus the parameter
z = (ζN/ζF )2 at ξN/ζN = 4, ξN/ξF = 10, T = 0.5TC , and h = 20, 40, 50.

Therefore, the term IC2 in the critical current decreases more sharply than IC1.

In particular, the typical damping scale for superconducting correlations is approximately

equal to ξNΩ = ξN/
√
Ω, whereas the effective exchange energy decreases by a factor of

z−1 = ζ2
F /ζ2

N ) 1.

Thus, when ζF ) ζN ) ξN both the damping scale and oscillation period of IC(L)

in the S–(FN)– S structures under consideration are much larger than the respective values

in similar SFS junctions, where the normal film is absent. This statement is illustrated by

the numerical calculation results shown in Figs.2.2 - 2.6.
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Figure 2.4. Real and imaginary parts of inverse coherence length q1 at H/πTC , ξN/ζN = 4,
ξN/ξF = 10, T = 0.5TC , and z = (ζN/ζF )2 = 50, 300.

Figures 2.2 and 2.3 show the real and imaginary parts of q2 and q1 respectively, as

functions of (ζN/ζF )2, for T = 0.5TC , h = 20, 30, 40 and ξN = 10ξF and ξN = 4ζN . it is

seen that for h = 30 Im(q2ξN) has maximum at (ζN/ζF )2 ≈ 300. The oscillation period

of the critical current near this maximum is Λ = 2π(Im(q2)−1 ≈ 1.5πξN , and its damping

length is (Re(q2))−1 ≈ 0.4ξN The damping scale of the second term in the expression for

the critical current is (Re(q2))−1 ≈ 0.014ξN which is two orders of magnitude smaller. Such

strong difference between the damping lengths, allows observation of the transition to the π

state in the structures, where the distance between the electrodes is an order of magnitude

larger than that in the available structures.

Fig. 2.4 shows dependences of real and imaginary parts of q1 on exchange energy

for parameter z = 50, 300. At small H critical current decrease without oscillations. With

H increase the period of oscillations is decreased. It is seen that the imaginary part of q1

has a maximum as function exchange energy and, with increase of z this maximum moves

towards large values of H . The value of this maximum increases with growth of z, and at

z ∼ 50 leaves on saturation. Simultaneously the damping length decreases with increase of

H .
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Figure 2.5. Normalized value of part of criticul current IC1 versus the distance L/ξN between
the superconducting electrodes for h = 30, ξN/ζN = 4, ξN/ξF = 10, T = 0.5TC , s = 1, and
z = (ζN/ζF )2 = 100, 300, 1000, 10000.

Figs. 2.5 and 2.6 show the critical current components IC1 and IC2 as functions

of the distance L between electrodes for T = 0.5TC and various values of the parameter

z = (ζN/ζF )2.
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Figure 2.6. Normalized value of part of critical current IC2 of the critical current versus the
distance L/ξN between the superconducting electrodes for h = 30, ξN/ζN = 4, ξN/ξF = 10,
T = 0.5TC , s = 1, and z = (ζN/ζF )2 = 1, 10, 100, 1000.

It is easy to see that the component IC2 at the given parameters decreases sharply

with an increase in L and, in agreement with expectations, its contribution to IC is negligibly

small already at L ≈ 0.5, i.e., long before the appearance of the first minimum in IC2. It

is interesting that the oscillation period in IC ≈ IC2 is a nonmonotonic function of the

parameter z. It has the minimum at z ≈ 300.

2.3 Conclusion

Thus, it has been shown that the use of a bilayer thin-film FN structure as a weak-

link material can lead to the effective decrease in H and to a significant increase in both the

damping length and oscillation period of the dependence IC(L) of the S–(FN)–S junctions

as compared to the respective values for similar structures containing only the ferromagnetic

film.
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Chapter 3

Critical current in S-FNF-S Josephson

junctions with collinear magnetization vectors

of ferromagnetic films

Introduction

The possibility of controlling the critical current of Josephson junctions, i.e., creat-

ing a Josephson transistor, was actively discussed previously in application to structures

with a two-dimensional gas or semiconductor as a weak-link material [1]. The theoretical

estimates and experimental investigations (see [2] and references in this work) show that

the gain of such a device is usually much smaller than one and, therefore, this device is

not attractable for applications. In recent theoretical works [3, 4], it was shown that the

critical current in Josephson structures containing ferromagnetic (F) materials can also be

efficiently controlled by varying the angle between the magnetization directions in these

F layers by means of an external magnetic field. In particular, in SFIFS structures [5–7],

where two sandwiches consisting of superconducting (S) and ferromagnetic (F) films are

separated by an insulator (I), change of the parallel orientation of the magnetizations of the

F layers to the antiparallel orientation can give rise to the transformation of a state with a

finite critical current not only to a state with zero critical current but also to a state with

a negative critical current. Unfortunately, the geometry of the SFIFS structures makes

the implementation of change in the angle very difficult. From this point of view, SFSF

structures investigated in [8–10], where one of the F films is screened from the external film

by a superconducting electrode, are more convenient. The triplet component of the critical

current appears in such contacts at the angle α $= 0, π. The characteristic damping length

of this component in the F layer is much larger than the characteristic damping length of

the critical current at α = 0 or π. This circumstance allows one to control the parameters

of the structure by varying the angle α. Unfortunately, in order to implement such control,

it is necessary to separate the ferromagnetic layers by a sufficiently thin S electrode. This

gives rise to the degradation of its critical temperature [11] and to the significant connect-
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edness of the magnetization directions of the F films, which hinders independent change

in their orientations. The second general demerit of the SFS Josephson structures with

traditional geometry [12–26] is a very small characteristic length ξ = ξ1 + iξ2 of penetration

of superconducting correlations induced in a ferromagnet owing to the proximity effect. It

is equal to several nanometers and is much smaller than the typical lengths ξN of super-

conductivity penetration into a normal (N) metal. In this Chapter it is shown that both

these disadvantages can be overcome in S–FNF–S contacts by specifying the supercurrent

in the direction parallel to the FN interface of the composite weak-link region. In such

structures, the direction of the magnetization of one of the F layers can be pinned by using

an antiferromagnetic substrate. The efficient decrease in the exchange energy investigated

previously [27] can simultaneously be used not only for the increase in ξF1 and ξF2 to the

ξN scale but also for the efficient control over the critical current in such junctions.

3.1 Structure of S-FNF-S junction and its mathematical

description

In this Chapter Josephson junctions of S-FNF-S type are analyzed (Fig. 3.1). This

junction consists of two superconducting electrodes which are connected by FNF trilaer

structure. Width of F films are equal and they are dF and width of normal film is 2dN . In

such structure current flows parallel to FN interface of the weak-link region. Direction of

magnetization of lower ferromagnetic film is fixed (exchange energy is H1) and the value

and sign of magnetization of the upper ferromagnetic film can be changed by value and

sign (exchange energy is H2). The origin of the coordinate system is in the middle of

the structure and the x and y axes are perpendicular and parallel to the NF interface,

respectively Fig. 3.1.

It is also suggested that the structure is completely symmetric and the suppression

parameters characterizing the NS and FS interfaces, respectively, are large so that the

suppression of superconductivity in the S electrodes can be disregarded.

Under the above assumptions, it can be suggested that the Green’s functions GS and

ΦS in superconducting electrodes are equal to their equilibrium values GS = ω/
√
ω2 + ∆2,

ΦS = ∆exp {±iϕ/2}, where ∆ and ϕ - are the absolute value and phase difference, re-

spectively, of the order parameters of the superconducting electrodes. The properties of

the weak-link region can be described via the linearized Usadel equations [17]. If the mag-
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Figure 3.1. Structure of S-FNF-S junction.

netization vectors of F films are perpendicular to the FS interfaces, the triplet component

is absent in the system and linearized Usadel equations in the Φ parameterization are

represented in the form

ξ2
N

{
∂2

∂x2
+

∂2

∂y2

}
ΦN −

|ω|
πTc

ΦN = 0, (3.1)

ξ2
F

{
∂2

∂x2
+

∂2

∂y2

}
Φ1,2 −

ω̃1,2

πTc
Φ1,2 = 0, (3.2)

where ΦN , Φ2,1 - are the Green’s functions in the normal metal and in the upper and

lower ferromagnetic layers, respectively; ω = πT (2n + 1) -are the Matsubara frequencies;

ω̃1 = |ω| + iH1 sgnω, ω̃2 = |ω| + iH2 sgnω.

The boundary conditions at the SN and SF interfaces (for y = ±L/2) have the

form [18], [30]

γBNξN
∂

∂y
ΦN = ±δ exp {±iϕ/2} , (3.3)

γBF ξF
∂

∂y
Φ1,2 = ±δ

ω̃1,2

|ω|
exp {±iϕ/2} , (3.4)

where δ = GS∆.

The boundary conditions at the FN interface (for x = ±dN ) have the form:

ξN
|ω|

∂

∂x
ΦN = γ

ξF
ω̃2,1

∂

∂x
Φ2,1, (3.5)

∓Φ2,1 + γBξF
∂

∂x
Φ2,1 =

ω̃2,1

|ω|
ΦN , (3.6)

γB = RB3AB3/ρF ξF , γ = ρNξN/ρF ξF ,
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where RB3 and AB3 - are the resistance and area of the NF interface, respectively. The

conditions at the free boundaries x = ±(dN + dF ) have the form

∂Φ1

∂x
= 0,

∂Φ2

∂x
= 0, (3.7)

and ensure the absence of the current through these boundaries.

For further simplification of the problem, the thicknesses of the F and N films are

assumed to be sufficiently small,

dN ) ξN , dF ) ξF , (3.8)

and the solution of the boundary value problem given by Eqs. (3.1)-(3.7) is sought in the

form of the expansion in small parameters (dN/ξN) and (dF/ξF ). In the first approximation,

the functions ΦN and Φ1,2 are independent of the coordinate x:

ΦN = A(y), Φ1 = B(y), Φ2 = C(y). (3.9)

In the next approximation at x = ±dN taking into account Eq. (3.7) we have:

∂ΦN

∂x
|dN

−
∂ΦN

∂x
|−dN

= 2dN

[
Ω

ξ2
N

−
∂2

∂y2

]
A(y), (3.10)

∂Φ1

∂x
= dF

[
Ω̃1

ξ2
F

−
∂2

∂y2

]

B(y), (3.11)

∂Φ2

∂x
= −dF

[
Ω̃2

ξ2
F

−
∂2

∂y2

]

C(y), (3.12)

where Ω = |ω| \πTC , Ω̃1,2 = ω̃1,2\πTC . The substitution of Eqs. (3.10) - (3.12) into

boundary conditions (6.5), (3.6) yields the following system of three equations for the

functions A(y), B(y) and C(y)

{
Ωζ2

N

ξ2
N

+ 1 − ζ2
N

∂2

∂y2

}
A(y) =

ΩC(y)

2Ω̃2

+
ΩB(y)

2Ω̃1

,

{
Ω̃2
ζ2
F

ξ2
F

+ 1 − ζ2
F

∂2

∂y2

}
C(y) =

Ω̃2

Ω
A(y), (3.13)

{
Ω̃1
ζ2
F

ξ2
F

+ 1 − ζ2
F

∂2

∂y2

}
B(y) =

Ω̃1

Ω
A(y).

ζF =
√
γF ξF , ζN =

√
γNξN , (3.14)

γF = γB
dF

ξF
, γN =

γB

γ

dN

ξN
. (3.15)
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The solution of the system of equations(3.13) is represented in the form

A(y) =
∑

i=1,2,3

(A2i−1 cosh(qiy) + A2i sinh(qiy)),

B(y) =
∑

i=1,2,3

(B2i−1 cosh(qiy) + B2i sinh(qiy)), (3.16)

C(y) =
∑

i=1,2,3

(C2i−1 cosh(qiy) + C2i sinh(qiy)).

The coefficients in Eqs. (3.16) are related as

B1,2 = A1,2
Ω̃1

Ω
ζ2
Nβ1, C1,2 = A1,2

Ω̃2

Ω
ζ2
Nε1, (3.17)

B3,4 = A3,4
Ω̃1

Ω
ζ2
Nβ2, C3,4 = A3,4

Ω̃2

Ω
ζ2
Nε2, (3.18)

B5,6 = −A5,6
ω̃1

ω

1

ζ2
F

ε2
k + ε2(u2 − q2

1)
, (3.19)

C5,6 = −A5,6
ω̃2

ω

1

ζ2
F

β2

k + β2(u2 − q2
1)

, (3.20)

β1,2 =
k

v2
1 − q2

1,2

, ε1,2 =
k

v2
2 − q2

1,2

, (3.21)

where k = ζ−2
F ζ−2

N , and the inverse characteristic lengths qi are the roots of the sixth order

equation

2k−1
(
q2 − u2

) (
q2 − v2

1

) (
q2 − v2

2

)
= 2q2 − v2

2 − v2
1, (3.22)

u2 =
1

ζ2
N

+
Ω

ξ2
N

, v2
1,2 =

1

ζ2
F

+
Ω

ξ2
F

+ i
h1,2

ξ2
F

, (3.23)

where h1,2 = H1,2/πTC are normalized exchange energies.

Following the procedure described in Chapter 1, from boundary conditions (6.2),

(6.4) the integration constants A1, A2, A3, A4, A5, A6 are determined in the form

A1,3 =
δ cos(ϕ/2)

q1,2 sinh(q1,2L/2)ζ2
NγBF ξF

r + (u2 − q2
1,2)

k +
{
ε21,2 + β2

1,2

}
/2

, (3.24)

A5 =
δ cos(ϕ/2)

q3 sinh(q3L/2)γBNξN

1 + (u2 − q2
3)r

−1

1 + η
, (3.25)

A2,4,6 = iA1,3,5 tan(ϕ/2) tanh(q1,2,3L/2), (3.26)

r =
γBF

γBN

ξF
ξNζ2

F

,

η =
k

2

{
(

β2

k + β2(u2 − q2
1)

)2 + (
ε2

k + ε2(u2 − q2
1)

)2

}
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The substitution of the solution obtained in the form of Eqs. (3.16) into the standard

expression for the superconducting current JS, yields to the sinusoidal dependence JS(ϕ) =

IC sinϕ. It is convenient to represent the critical current IC as the sum of three terms

IC = IC1 + IC2 + IC3, (3.27)

IC1 =
8πT

eξFγBF RBF
Re

∑

ω>0

a2
1(δ/ω)2

(2k + ε21 + β2
1)q1 sinh q1L

,

IC2 =
8πT

eξFγBF RBF
Re

∑

ω>0

a2
2(δ/ω)2

(2k + ε22 + β2
2)q2 sinh q2L

,

IC3 =
2πT

eξNγBNRBN
Re

∑

ω>0

a2
3(δ/ω)2

r2(1 + η)q3 sinh q3L
,

where ai = r + u2 − q2
i , i = 1, 2, 3. The developed approach is applicable when all the

characteristic lengths of the problem are larger than the thicknesses of the normal and

ferromagnetic films. Expressions (3.22), (6.48), (3.27) specify a general expression for the

critical current of the S–FNF–S Josephson junctions under investigation.

3.2 The analysis of inverse coherence lengths vectors and

critical current

When h1 $= h2, the system is similar to an oscillatory system with three degrees of

freedom, with the partial inverse lengths given by Eqs. (6.48) and with own inverse lengths

q1,2,3, that are determined from Eq. (3.22). When the magnetizations of the ferromagnetic

films coincide in magnitude and direction, h1 = h2 = h, the situation is similar to that

considered in Chapter 1. In this case, according to Eqs. (3.22), (3.27) the expressions for

the critical current components IC1 and IC3 are transformed into the results obtained in

Chapter 1 for the critical current in the S–FN–S Josephson junctions and IC2 = 0.

Analysis of expressions (3.27) for the critical-current components is simplified for a

number of limiting cases.

3.2.1 The limit of high resistance of the FN interface

In the limit of high resistance of the FN interface

ζN ' ξN , ζF ' ξF (3.28)

coupling between the F and N films is small in the three-layer FNF structure. In this

approximation, it follows from Eq. (3.22) that the proper coherence lengths coincide with
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the partial coherence lengths. As a result, the system is decomposed into three independent

supercurrent flow channels. In this case, Eqs. (3.27) are transformed into the expressions

for the critical current in two-barrier SINIS and SIFIS junctions [18], [31].

3.2.2 The limit of “strong” normal film

In the limit of “strong” normal film,

ζN >> ζF (3.29)

and for the limit ξN >> ξF from (3.22) it follows that inverse coherence lengths in the next

approximation are given by the expressions

q2
1 = v2

1+θ(h1−h2), q2
2 = v2

1−θ(h1−h2), (3.30)

q2
3 = u2 −

v2
1 + v2

2

2v2
1v

2
2ζ

2
F ζ

2
N

, (3.31)

where θ(x) -is the Heaviside step function.

According to Eqs. (3.27), (3.30), (3.31) the critical-current components IC1, IC2

decrease in a length of (Re(q1,2))−1 << ξN with increasing L. At the same time, the term

IC3 decreases in a length comparable with ξN . The period of spatial oscillations IC3(L)

depends strongly on the relation between h1 and h2.

3.2.3 Antiferromagmetic configuration of vectors of magnetization

Figure 3.2 shows the imaginary and real parts of q3 calculated as functions of the

exchange energy h2 of one of the ferromagnetic layers at the given energy h1 = 30, of

the other ferromagnetic layer for the parameters z = (ζN/ζF )2 = 50, 150, 300, 600 and

ξN/ζN = 4, ξN/ξF = 10. It is seen that Im q3 for the antiparallel orientation of the

magnetizations of the F films vanishes strictly at h2 = −h1 for all the parameter values.

q2
3 =

Ω

ξ2
N

+
(h2 + Ω2)ζ2

F + Ωξ2
F

ζ2
Nζ

2
F (h2 + (ξ2

F ζ
−2
F + Ω)2)

. (3.32)

The absence of oscillations is explained by the compensating action of opposite magne-

tizations. According to Fig. 3.2 h1 = −h2 the imaginary part of q3 vanishes but also

at

h1 = −
1

γ2
F h2

. (3.33)

The position of the second point on the h2, axis at which Im q3 = 0, depends on the

parameter z and can be located both to the left and to the right from the value h2 = −h1.
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Ν

Ν

Figure 3.2. Imaginary part of inverse coherence length q3 vs. the normalized exchange
energy H2/πTC , for the parameters z = (ζN/ζF )2 = 50, 150, 300, 600 at ξN/ζN = 4, ξN/ξF =
10, T = 0.5TC , H1/πTC ; Inset shows dependence of real part of q3 for the same parameters.

3.2.4 Ferromagnetic configuration of vectors of magnetization

Expressions (3.30), (3.31) are simplified for h1 = h2 = h and reduce to

q2
1 = q2

2 =
1

ζ2
F

+
Ω

ξ2
F

+ i
h

ξ2
F

, (3.34)

q2
3 =

Ω

ξ2
N

+
(h2 + Ω2)ζ2

F + Ωξ2
F + ihξ2

F

ζ2
Nζ

2
F (h2 + (ξ2

F ζ
−2
F + Ω)2)

. (3.35)

At parallel magnetization junction can be as in 0 state so in π state (Chapter1).

3.2.5 Synchronization

It is interesting that synchronization, Im q1 = Im q2, occurs in the system at small

h1, h2 values even when h1 is not identically equal to h2. . The relative width of the

synchronization region, µ = (|h1| − |h2|)/ |h1| at h1 ≈ 1, at the parameters h1 ≈ 1 and

z = (ζN/ζF )2 = 100, ξN/ζN = 4, ξN/ξF = 10 is equal to about 30 and decreases with a

further increase in h1.
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Figure 3.3. Dependence of imaginary parts of q2 and q3 on normalized value of exchange
energy H2/πTC , for z = (ζN/ζF )2 = 100 and H1/πTC = 0.1, 0.6, ξN/ζN = 4, ξN/ξF = 10,
T = 0.5TC .

3.2.6 Critical current

Figure 3.4 shows the critical-current components of the structure calculated numeri-

cally as functions of the distance between the superconducting electrodes for the parameters

h1 = 30, z = (ζN/ζF )2 = 300, ξN/ζN = 4, ξN/ξF = 10, T = 0.5TC , γBF /γBN = 1, and

h2 = 30,−10,−30,−78.4.
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Figure 3.4. Dependence of normalized part of critical current |IC3γBNeRBN/2πT | (and
(inset) shows part of critical current |IC1γBF eRBF /4πT |) vs. the distance between the
superconducting electrodes L/ξN for the parameters h1 = 30, z = (ζN/ζF )2 = 300, ξN/ζN =
4, ξN/ξF = 10, T = 0.5TC , γBF /γBN = 1, and h2 = 30,−10,−30,−78.4.

The inset shows the normalized part of the critical current IC1, calculated at h2 = 30

with the same parameters. According to Fig.3.4 the critical current components IC1,2 in

the case under consideration are much smaller than the component IC3 and decrease much

more rapidly with increasing L . For the case L " ξN interesting for applications, the

contribution to the critical current from IC1,2 is negligibly small, so that IC = IC3 with a

good accuracy. The critical current decreases exponentially with increasing L and under-

goes oscillations associated with the transition of the structure from the 0 state to the π

state at a length of ξN ' ξF . In complete agreement with Fig.3.2 the oscillations disappear

at h2 = −h1 and h2 = −(γ2
F h1)−1 ≈ −78.4.
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Figure 3.5. Dependence of normalized part of critical current IC3γBNeRBN/2πT vs. the
normalized exchange energyh2 for the parameters h1 = 30, z = (ζN/ζF )2 = 300, ξN/ζN = 4,
ξN/ξF = 10, T = 0.5TC , γBF /γBN = 1, and L/ξN = 0.1, 2, 3, 4, plotted with scales of
10, 1, 0.2, 0.01 respectively.

Figure 3.5 shows the IC3(h2) dependence calculated numerically at h1 = 30 for

the distances between the superconducting electrodes L/ξN = 0.1, 1, 2, 4. The parameter

z = 300 is taken such that the period of the critical-current oscillations at h2 = h1 is

minimal (see Fig. 3.2). According to Fig.3.4 the structure at L/ξN = 0.1 always is in the

0-state. For this reason, change from h2 = h1 to h2 = −h1 does not lead to change in the

sign of IC3, but triples the critical current. At h2 = h1 and L/ξN = 1, 2 the Josephson

junction is in the π-state (see Fig. 3.4). In this case, change from h2 = h1 to h2 = −h1

gives rise to the transition from theπ- state to the 0-state. After this transition, the critical

current increases by factors of 7 for L/ξN = 1 and3 for L/ξN = 2. Finally, the system is

in the 0-state for L/ξN = 4 at h2 = h1. It is seen that the transition from the 0 state to

the π-state is possible if h2 lies in the range from 4 to 15. A change from h2 = h1 to −h1

results in the increase in the critical current by a factor of about 6.

Figures 3.4 and 3.5 show that the transition from the ferromagnetic configuration

(h2 = h1) to the antiferromagnetic configuration (h2 = −h1) can be accompanied by a
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significant increase in the critical current of the structure, particularly near the transition

between the ”0” state and ”π” state. Far from the transition points, the gain can be equal

to ten owing to change in the characteristic damping length of the critical current (see the

inset in Fig. 3.2).

3.3 Conclusion

The critical current of S–FNF–S Josephson structures has been calculated as a func-

tion of the distance between the superconducting (S) electrodes, L, via the Usadel quasi-

classical equations for the case of specifying the supercurrent in the direction parallel to the

interface between the ferromagnetic (F) and normal (N) films of the composite weak-link

region. It has been shown that, owing to the interaction between the F and N films, both

the typical decrease scale of the critical current and the period of its oscillations to lengths

of the scale ξN can be much larger than the respective quantities for the SFS junctions.

Moreover, this interaction changes both the magnitude and sign of the critical current. It

has been shown that the critical current in a structure with the collinear magnetization

vectors of the films can be significantly different from the critical current in a structure

with the antiparallel magnetization of the F films.

Note that these calculations are valid if the magnetization of the film changes with-

out the turn of the magnetization in the film plane; i.e., remagnetization occurs through

the decrease in the magnetic moment to zero and the further increase in the direction op-

posite to the initial direction. If the transition from the ferromagnetic configuration to

the antiferromagnetic one occurs by means of the turn of the magnetization, e.g., with the

conservation of its absolute value, then the critical current component that corresponds to

the triplet pairing and decreases at lengths independent of H must be generated in the

structure.
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Chapter 4

Critical current in S-FNF-S Josephson

junctions with noncollinear magnetization

vectors of ferromagnetic films

Introduction

The experimental investigations of the processes in Josephson junctions with the

ferromagnetic materials have been focused on the structures in which the weak coupling

region is a weak single-domain ferromagnet (see, e.g., [1]) or a fully spin-polarized metal

[2]. As shown in [3, 4], in the Josephson junctions, where the weak-coupling region is a

multilayer structure consisting of the alternating layers of normal (N) and ferromagnetic

(F) metals, it is possible not only to significantly increase the characteristic damping and

oscillation scale in the dependence of the critical current IC on the ferromagnet thickness,

but also to efficiently control both the magnitude and sign of IC . The control was achieved

by the remagnetization of one of the ferromagnetic layers, i.e., by changing the magnitude

and direction of the magnetization vector M through the transition from the ferromagnetic

orientation (M1 ↑↑ M2 ) to the antiferromagnetic orientation (M1 ↑↓ M2 ) of the magne-

tization vectors of the ferromagnetic films. It is qualitatively clear that control over the

magnitude and the sign of IC by means of the rotation of the magnetization vector M1

of one of the ferromagnetic films at a certain angle α with respect to M2 is much more

energetically favorable than its complete remagnetization, i.e., the transition from M1 to

−M1 by means of a change in the magnitude of this vector. In this Chapter it is shown

that the effective control in such a spin gate is achieved at a relatively small misorientation

angles α if the rotation is performed from the antiferromagnetic configuration. Moreover,

this approach can provide a significantly larger difference between the critical currents in

the 0 (IC > 0) and π (IC < 0) states than that in the case of the remagnetization by means

of a change in this vector from M1. to −M1
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4.1 Structure of S-FNF-S junction and its mathematical

description

Figure 4.1 shows the schematic view of the S–FNF–S junction under investigation.

It consists of a normal metal film with the thickness 2dN , that is sandwiched between two

ferromagnetic films each with the thickness dF . The superconducting electrodes are joined

to the ends of such an FNF multilayer structure. Let the coordinate origin be at the middle

of the structure and the x and y axes be directed across and along the NF interfaces,

respectively.

Figure 4.1. Structure of S-FNF-S junction.

Below only the case where the vectors M1,M2 lie in the plane of the ferromagnetic

films will be considered. For definiteness, we choose the direction of the magnetizations of

the lower and upper ferromagnetic layers along the y axis and at the angle α to this axis.

Let the “dirty” limit conditions be satisfied in the normal and ferromagnetic materials,

their effective electron–phonon coupling constant be zero, and exchange energy H = 0 in

the normal metal. Then, let us assume that the structure is completely symmetric and

the suppression parameters are large so that the suppression of superconductivity in the

superconducting electrodes can be neglected.

Under the above assumptions, the anomalous Green’s functions in the upper and

lower ferromagnets, as well as in the normal layer, can be considered as the matrices (f̂),
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(p̂) and (n̂), that satisfy the linearized Usadel equations [4], [6]:

ξ2
F

{
∂2

∂x2
+

∂2

∂y2

}
f̂ − Ωf̂ −

i

2
h(f̂ Ĥ∗

1 + Ĥ1f̂) = 0, (4.1)

ξ2
F

{
∂2

∂x2
+

∂2

∂y2

}
p̂ − Ωp̂ −

i

2
h(p̂Ĥ∗

2 + Ĥ2p̂) = 0, (4.2)

ξ2
N

{
∂2

∂x2
+

∂2

∂y2

}
n̂ − Ωn̂ = 0, (4.3)

Ω = |ω|/(πTC), ω -are the Matsubara frequencies, h = H/πTc, Ĥ1 = σ̂2 sinα + σ̂3 cosα,

and Ĥ2 = σ̂3, (σ̂i-are the Pauli matrices).

System of equations (4.1)-(4.3) should be supplemented by the boundary conditions.

At the free interfaces of the structure (x = dN + dF , x = −dN − dF ) they have the form

∂f̂

∂x
= 0,

∂p̂

∂x
= 0. (4.4)

The boundary conditions at the FN interface (for x = ±dN ) have the form [18], [8]:

ξN
∂

∂x
n̂ = γξF

∂

∂x
f̂ , −γBξF

∂

∂x
f̂ + f̂ = n̂, (4.5)

ξN
∂

∂x
n̂ = γξF

∂

∂x
p̂, γBξF

∂

∂x
p̂ + p̂ = n̂. (4.6)

Finally, the boundary conditions at the SF and SN interfaces have the form

γBNξN
∂

∂y
n̂ = ±f̂S, y = ±L/2,

γBF ξF
∂

∂y
f̂ = ±f̂S, y = ±L/2, (4.7)

γBF ξF
∂

∂y
p̂ = ±f̂S, y = ±L/2.

Under the above assumptions, the anomalous Green’s functions in the superconducting elec-

trodes in Eqs. (4.7) can be represented in the form f̂S(±L/2) = σ̂3∆exp(±iϕ/2)/
√
ω2 + ∆2,

where ∆ and ϕ - are the absolute value and phase difference of their order parameters.

When the normal and ferromagnetic films are sufficiently thin,

dN ) ξN , dF ) ξF (4.8)

the boundary value problem given by Eqs. (4.1)-(4.7) is significantly simplified and reduces

to the solution of the equations for the x independent components f̂(y), p̂(y) and n̂(y) of
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the initial functions of the problem:

(uN −
∂2

∂y2
)n̂(y) =

f̂(y) + p̂(y)

2ζ2
N

, (4.9)

(uF −
∂2

∂y2
)f̂(y) −

ih(f̂(y)Ĥ∗
1 + Ĥ1f̂(y))

2ξ2
F

=
n̂(y)

ζ2
F

, (4.10)

(uF −
∂2

∂y2
)p̂(y) −

ih(p̂(y)Ĥ∗
2 + Ĥ2p̂(y))

2ξ2
F

=
n̂(y)

ζ2
F

, (4.11)

where uN = Ωξ−2
N + ζ−2

N , uF = Ωξ−2
F + ζ−2

F , ζF = γF ξ2
F , ζN = γNξ2

N .

The matrices f̂(y), p̂(y) and n̂(y) can be represented in the Pauli matrix basis:

f̂(y) = f0σ̂0 + f1σ̂1 + f2σ̂2 + f3σ̂3, (4.12)

p̂(y) = p0σ̂0 + p1σ̂1 + p2σ̂2 + p3σ̂3, (4.13)

n̂(y) = n0σ̂0 + n1σ̂1 + n2σ̂2 + n3σ̂3. (4.14)

Substituting Eqs. (4.12)-(4.14) into Eqs. (4.9)-(4.11) and taking into account Eqs. (4.7)

one can easily see that this boundary value problem has only the trivial solution f2 = 0,

p2 = 0, n2 = 0, so that matrix equations (4.9)-(4.11) reduce to the system of nine differential

equations

(uN −
∂2

∂y2
)nj =

fj + pj

2ζ2
N

, j = 0, 1, 3,

(uF −
∂2

∂y2
)f0 + ihf cosαf3 =

n0

ζ2
F

,

(uF −
∂2

∂y2
)f1 − hf sinαf3 =

n1

ζ2
F

, (4.15)

(uF −
∂2

∂y2
)f3 + hf sinαf1 + ihf cosαf0 =

n3

ζ2
F

,

(uF −
∂2

∂y2
)p0,3 + ihfp3,0 =

n0,3

ζ2
F

,

(uF −
∂2

∂y2
)p1 =

n1

ζ2
F

.

Here, hf = h/ξ2
F , f0 ∼ 〈ψ↑ψ↓〉+ 〈ψ↓ψ↑〉 and f3 ∼ 〈ψ↑ψ↓〉−〈ψ↓ψ↑〉 are the triplet and singlet

parts of the condensate function, respectively; and f1 ∼ 〈ψ↑ψ↑〉 ∼ 〈ψ↓ψ↓〉 is the triplet

component.
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We seek the solution of system (4.15) in the form of the sums:

fi =
9∑

j=1

(f (c)
ij cosh(qjy) + f (s)

ij sinh(qjy)),

pi =
9∑

j

(p(c)
ij cosh(qjy) + p(s)

ij sinh(qjy)), (4.16)

ni =
9∑

j

(n(c)
ij cosh(qjy) + n(s)

ij sinh(qjy)),

where i = 0, 1, 3, and inverse lengths qj satisfy the dispersion equation:

(a3
jb

2
j − 4a2

jbj + ajk
2b2

j + 4aj − k2bj + k2bj cosα) ∗

(bja
3
j − 2a2

j + ajk
2bj − k2 − k2 cosα) = 0,

where k = ζ2
Fhf , bj = 2ζ2

N(uN − q2
j ) and aj = ζ2

F (uF − q2
j ).

It can be shown that, for qj, which are solutions of the equation

(bja
3
j − 2a2

j + ajk
2bj − k2 − k2 cosα) = 0 (4.17)

the coefficients f (c,s)
ij , p(c,s)

ij , and n(c,s)
ij are zero. Hence, sums (4.16) contain only five nonzero

terms, and their coefficients are related as

f (c,s)
0j = n(c,s)

0j

cosα(bjaj − 1) + 1

aj (cosα+ 1)
,

p(c,s)
0j = n(c,s)

0j

bjaj − 1 + cosα

aj (cosα + 1)
,

f (c,s)
3j =

in(c,s)
0j (bjaj − 2)

k (cosα + 1)
, p(c,s)

3j =
in(c,s)

0j (bjaj − 2)

k (cosα+ 1)
, (4.18)

f (c,s)
1j =

in(c,s)
0j sinα(bjaj − 1)

aj (cosα + 1)
, p(c,s)

1j =
in(c,s)

0j sinα

aj (cosα + 1)
,

n(c,s)
1j =

in(c,s)
0j sinα

cosα + 1
, n(c,s)

3j =
2in(c,s)

0j (ajbj − 2)

bjk (cosα + 1)
.

Substituting Eqs. (4.16), (4.18) into Eq. (4.7), we obtain five linearly independent equations

for the coefficients n0j .

4.2 The limit of strong normal film

For further simplification of the problem the case of strong normal film will be

discussed
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ζN >> ζF , ξN >> ξF . (4.19)

In this approximation, the equation for the inverse characteristic lengths qj

a3
jb

2
j − 4a2

jbj + ajk
2b2

j + 4aj − k2bj + k2bj cosα = 0 (4.20)

can be solved analytically:

q2
1,2 = uN −

4u2
F + h2

f(1 − cosα)

4uF (u2
F + h2

f)ζ
2
Nζ

2
F

±

±
hf

√
h2

f(1 − cosα)2 − 8u2
F (1 + cosα)

4uF (u2
F + h2

f)ζ
2
Nζ

2
F

, (4.21)

q2
3,4 = uF ± ihf , q2

5 = uF . (4.22)

At α = 0 and α = π, the expressions for q1,2coincide with those previously derived

in chapter 2 for the case of strong normal film (4.19):

q2
1 =

Ω

ξ2
N

+
(h2 + Ω2)ζ2

F + Ωξ2
F + ihξ2

F

ζ2
Nζ

2
F (h2 + (ξ2

F ζ
−2
F + Ω)2)

, α = 0, (4.23)

q2
2 = (q2

1)
∗, α = 0. (4.24)

q2
1 =

Ω

ξ2
N

+
(h2 + Ω2)ζ2

F + Ωξ2
F

ζ2
Nζ

2
F (h2 + (ξ2

F ζ
−2
F + Ω)2)

, α = π, (4.25)

The real parts of the last three inverse lengths q3, q4, and q5 are much larger than

Re(q1), so that, to determine the total current in approximation (4.19) it is sufficient to

determine n(c,s)
01 and n(c,s)

02

n(s)
01,02 = in(c)

01,02 tan(ϕ/2) tanh(q1,2L/2), (4.26)

n(c)
01,02 =

∓ihf (cosα + 1) cos(ϕ/2)

8q1,2 sinh(q1,2L/2)ζ4
N

b1,2

[
δf t

f
1,2 − δntn1,2

]

(u2
F + h2

f )
2(q2

2 − q2
1)

,

where δf,n = ∆/(
√
ω2 + ∆2γBF,BNξF,N) and

tf1,2 = (u2
F + h2

f )b1,2uNζ
2
F + 2(u2

F + h2
f − 2uF q2

1,2),

tn1,2 = (u2
F + h2

f )
2b1,2ζ

2
F ζ

2
N .

The expression for the superconducting current flowing through the junction has the form

IS =
−2iπTw

e

[
dF

ρF
(IF1 + IF2) +

2dN

ρN
IN

]
,
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IN =
∞∑

ω>0

(n0
d

dy
n0 + n3

d

dy
n3 − n1

d

dy
n1),

IF1 =
∞∑

ω>0

(f0
d

dy
f0 + f3

d

dy
f3 − f1

d

dy
f1),

IF2 =
∞∑

ω>0

(p0
d

dy
p0 + p3

d

dy
p3 − p1

d

dy
p1).

The substitution of functions (4.16), (4.18), (4.21), (4.26) into the above expression yields

the sinusoidal dependence IS(ϕ), where the critical current is represented in the form

IC = IC1 + IC2, (4.27)

ICi =
πT∆ζ−4

F ζ−8
N

eRBNγBNξN

∞∑

ω>0

Aib2
i (s

ξN
ξF

tfi + tni )2

32qi sinh(qiL)(∆2 + ω2)
.

Here, s = γBN/γBF , and i = 1, 2,, and

Ai =
2
{
2(aibi − 2)2 − h2

fζ
4
F b2

i (cosα1 + 1)
}

b2
i (u

2
F + h2

f )
4(q2

2 − q2
1)

2
−

−
2h2

f (biai − 1)(cosα1 + 1) + (aibi − 2)2(h2
f −

a2
i

ζ4F
)

a2
i ζ

2
Nζ

−6
F (u2

F + h2
f )

4(q2
2 − q2

1)
2

.

Expression (4.27) describes the behavior of IC of the junction under investigation in

approximation (4.19) and will be used, together with Eq. (4.21) in analysis whose results

are shown in Figs. 4.2 -4.5.

4.3 Analysis of inverse coherence lengths.

The real and imaginary parts of the inverse characteristic lengths q1,2 calculated at

ξN/ζN = 4 are shown in Figs. 4.2 and 4.3 , respectively, as functions of the angle α for the

normalized exchange energy h = 30 (the solid and dashed lines for q1 and q2, respectively)

and h = 15 (the dash–dotted and dotted lines for q1 and q2, respectively). The insets show

the same quantities calculated at h = 30 and ξN/ζN = 4 (the solid and dashed lines for

q1 and q2, respectively) and q1 and q2 (the dash–dotted and dotted lines for q1 and q2,

respectively)

It is seen that the dependences Re(q1,2) and Im(q1,2) are symmetric with respect to

the angle α = π. As the angle α = 0 increases from to α = α
′

α
′

= arccos(1 + 4uF/h2
f (uF −

√
u2

F + h2
f)), (4.28)
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Figure 4.2. q1,2 versus the misorientation angle α of the vectors M1,2 at ξN/ζN = 4,
ξN/ξF = 10, ζ2

N/ζ2
F = 300, T = 0.5TC , ω = πT and h: h = 30, h = 15. The inset shows

the same dependence for ξN/ζN = 4 and ξN/ζN = 2 at h = 30, ξN/ξF = 10, ζ2
N/ζ2

F = 300,
T = 0.5TC , ω = πT .

both the imaginary and real parts of q1 decrease smoothly, and q2 = q∗1. According to Fig.

4.3 the imaginary parts Im(q1,2) vanish at α = α
′

, thus, q1 and q2are real. As α further

increases to α = π the imaginary parts Im(q1,2) remain zero. The real part of q1 increases

and reaches a local maximum given by Eq. (4.25) at α = π whereas q2 decreases to

q2
2 = Ω(

1

ξ2
N

+
ζ2
F

ζ2
N(ξ2

F + Ωζ2
F )

), α = π. (4.29)

It can be shown that the coefficient A2 in Eq.(4.27) tends to zero at α → π , so that

the contribution IC2 to the critical current of the junction vanishes. A similar vanishing of

the pre-exponential factor in one of the components of the critical current was previously

pointed out in [9].

According to Fig. 4.2 and (4.29) q2 in the region α
′ ≤ α ≤ 2π − α

′

depends weakly

on h. Such behavior is typical of the solutions generated by the triplet component, which is

odd in ω and even in the momentum. This component is responsible for the existence of the

angle range α
′ ≤ α ≤ 2π − α

′

, where Im(q1,2) = 0. This is also confirmed by calculations
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Figure 4.3. q1,2 versus the misorientation angle α of the vectors M1,2 at ξN/ζN = 4,
ξN/ξF = 10, ζ2

N/ζ2
F = 300, T = 0.5TC , ω = πT and h - h = 30 and h = 15. The inset shows

the same dependence for ξN/ζN = 4 and ξN/ζN = 2 at h = 30, ξN/ξF = 10, ζ2
N/ζ2

F = 300,
T = 0.5TC , ω = πT .

within the framework of the approach developed in [10], which ignores the existence of such

a triplet component. In the last case, the imaginary part of q vanishes strictly at α = π,

is absent. Thus, the existence of q2. clearly indicates that the triplet component odd in

ω exists in the system; this component decreases with an increase in the distance from

the superconductors at a characteristic length much longer than a similar length for the

components even in ω. The insets in Figs.4.2 and 4.3 show that, as the transparency of

the FN interface, i.e., the ratio ξN/ζN , decreases, the range α
′ ≤ α ≤ 2π − α

′

, where the

imaginary parts of q1,2 vanish, expands, and q2 approaches the value
√
Ω/ξN . Note that the

range where Im(q1,2) = 0, also expands with an increase in h. The above calculations were

performed with the parameters ω = πT , ξN/ξF = 10, T = 0.5TC . This set of parameters

at ξN/ζN = 4, and h = 30 corresponds to the minimum period of the spatial oscillations of

the critical current. For this reason, Im(q1,2) approaches zero both with a further increase

in the magnetization h = 30, and with a decrease in the ratio ξN/ζN .
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4.4 Critical current

At Fig. 4.4 the critical current calculated by Eqs. (4.27), (4.20) with ξN/ξF = 10,

T = 0.5TC , ξN/ζN = 4, and h = 30 at the distances between superconducting electrodes

L/ξN = 0.5, 1, 2, 4 is shown as a function of the rotation angle α of the vectors M1,2. For

a more convenient comparison of the shapes of the curves, the Ic, values calculated for

L/ξN = 1 and L/ξN = 2 were multiplied by a factor of 3, and Ic calculated for L/ξN = 4

-was multiplied by a factor of 20.

Figure 4.4. ICγBNeRBN/2πT versus the angle α at h = 30, ξN/ζN = 4, ξN/ξF = 10, s =
1, T = 0.5TC , ζ2

N/ζ2
F = 300 and L/ξN = 0.5, 1, 2, 4 .The dependences for L/ξN = 1, 2, 3 are

multiplied by factors 3, 3 and 20, respectively.

It is seen that the junction at L/ξN = 0.5 is in the 0-state at any misorientation

angle α of the vectors M1,2. The junction at L/ξN = 1 is in the π - and 0 states at α = 0

and π-, respectively.

When the angle α varies from α = 0 to α = π the state with the negative critical

current holds up to α = 2.46 and the critical current in the π-state is maximal at α = 1.62

rather than at the parallel orientation of the magnetizations. The behavior of Ic(L) at

L/ξN = 2 is the same. In this case, the π state holds up to α = 2.95, and the critical

current in theπ state is maximal at α = 2.45.
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Figure 4.5. |ICγBNeRBN/2πT | versus the distance between the superconducting electrodes
L/ξN for the parameters h = 30 and ξN/ζN = 4, ξN/ξF = 10, s = 1, T = 0.5TC , ζ2

N/ζ2
F =

300, α = 0, 2.5, 3, π.

Finally, at L/ξN = 4 and α = 0 the junction is in the 0 state. As α increases, the

critical current decreases and the junction at α = 1.75 passes to the π-state, which in turn

changes to the 0-state at α = 3.1. The maximum of the critical current in the π-state is

also shifted towards π (α = 2.76). With a further increase in the distance between the

superconducting electrodes, additional regions of the 0 and π-states appear between α = 0

and α = π. However, an increase in L s accompanied by the exponential decrease in the

critical current.

This behavior is illustrated in Fig. 4.5, which shows the dependence I|C(L)| calcu-

lated with the parameters α = 0, 2.5, 3, π, ξN/ξF = 10, T = 0.5TC , ξN/ζN = 4, and h = 30

. As the misorientation angle α increases from 0 to α
′

the oscillation period increases and

is formally infinity at α = α
′

.

The further evolution of IC(L) with an increase in α (in the range [α
′

; 2π − α
′

]) is

determined by the competition of two contributions to IC(L). The first contribution (IC1)

is due to the components with zero projection of the magnetic moment of Cooper pairs is

always positive. The second contribution (IC2) is always negative and is due to the existence
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of the triplet component with nonzero projection of the magnetic moment of Cooper pairs

in the weak-coupling region. At α = π IC2 = 0 and the critical current IC (shown by the

dotted line in Fig. 4.5) is always positive. At α $= π the contribution IC appears in IC2(L),

this contribution is negative, and its absolute value decreases with an increase in L much

more slowly than IC1(L). Owing to the difference between Re(q1) and Re(q2) in the range

α
′ ≤ α ≤ 2π − α

′

there is only one length L, beginning with which theπ state appears in

the junction and holds with a further increase in L. At α → π the transition to the π state

occurs at the length tending to infinity.

4.5 Conclusion

Thus, a new type of “triplet” π junction is possible in the S–FNF–S structures. The

possibility of the existence of the triplet π junction was previously discussed in [11]- [17],

where it was shown that the triplet superconducting component, whose contribution to IC

can be both negative and positive, is generated in the structures containing one or several

ferromagnetic layers with noncollinear magnetizations. For this reason, the π state in such

structures can be due not only to the oscillatory decrease in the singlet component and

triplet component with zero projection of the magnetic moment of Cooper pairs, but also

to the superposition of this combination with the contribution from the triplet component

with nonzero projection of the magnetic moment of Cooper pairs to IC . It is important

that the characteristic scale of the decrease in all these components, ξF is deter- mined

by the transport parameters of the ferromagnet. In contrast to [11]- [17] it was shown

that the π state appears in the structures under investigation as a result of the interaction

between two spatially nonoscillating contributions to the critical current; each contribution

decreases at lengths about the coherent length of the normal metal, which is normally much

longer than the length ξF . This is illustrated by the dash–dotted curves in Fig. 4.5. In

particular, the transition to the π-state at α = 3 occurs at L/ξN = 2.4. As the difference

of α from π increases, the 0 - π transition point is shifted towards smaller L values. Note

that the existence of the triplet π junction allows one to effectively control the critical

current of the S–FNF–S spin gate by means of the rotation of the magnetization vectors of

the ferromagnetic films from its initial antiferromagnetic configuration by a relatively small

angle. In this case, the difference between the critical currents in the ”0” (Ic > 0) and ”π”

(Ic < 0) states can be much larger than that in the case where the magnetization direction
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of one of the ferro- magnetic films is changed through its remagnetization, i.e., through the

transition from M1 to -M1 by means of a change in the length of this vector.
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Chapter 5

Josephson effect in S-FN-S structures with

arbitrary thickness of ferromagnetic and normal

layers

Introduction

In the last few years, noticeable progress was achieved in the development of special

techniques for fabricating superconducting spintronic devices based on SF-structures (S- su-

perconductor, F- ferromagnetic metal). Among them are arrays of Nb/CuNi π-junctions [1],

S/F1/N/F2 spin valves consisting on V/Fe superlattices [6], Nb/CuNi nanostructures with

a high-quality S-F interface, exhibiting re-entrant and double re-entrant TC(dF ) behav-

ior [2], [3].

The results obtained in [8] - [10] are essentially based on the assumption that the

thicknesses, dN , dF , of all the films in FNF multilayer are small compared to their decay

lengths. This assumption allows one to simplify the problem and to reduce two dimensional

problem to one dimensional.

In real structures the requirement dN ) ξN can be easily fulfilled, while the inequal-

ity dF ) ξF is difficult to achieve due to the smallness of ξF and finite roughness of NF

interfaces. Therefore the solution of two dimensional problem is needed. The structures

with two dimensional geometry were examined in [8] for two-domain junction, in [5] for

multidomain SF structures, and in [6] for junction with helicoidal spin modulation.

It is worth to note that the solution of two dimensional problem arising in the "in

plane" geometry, when the domain wall is perpendicular to SF interface [8], [7], is simplified

by a natural for this problem suggestion that domain walls consist of materials differing

only by the direction of their magnetization.

In this Chapter the properties of a generic S-FN-S junction and perform the cal-

culation of its critical current beyond the limits of small F and N film thicknesses for two

dimensional geometry will be discussed. Contrary to [8], [7] in our approach we shall con-

sider that NF interface has finite transparency and that N and F metals have different
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transport parameters. Under these conditions, the solution of the two dimensional prob-

lem should be found, which is essentially more complicated compared to that discussed

in [8], [7].

5.1 Junction model

Consider a symmetric multilayered structure, which consists of a superconducting

(S) electrode contacting the end-wall of a bilayer. This bilayer consists of ferromagnetic

(F) film and normal metal (N) having a thickness dF , and dN respectively (see Fig.5.1).

It is supposed also that the condition of a dirty limit is fulfilled for all metals and that

effective electron-phonon coupling constant is zero in F and N films. For simplicity it will

be suggested below that the parameters γBN and γBF which characterize the transparency

of NS and FS interfaces

Figure 5.1. FIG. 1. Schematic view of theS − (NF ) − S junction.

are large enough to neglect the suppression of superconductivity in S part of the

proximity system and to permit the use of the linearized Usadel equations in F and N

films of the structure. Under the above conditions the problem of calculation of the critical

current in the structure reduces to solution of the set of 2 -dimensional linearized Usadel

equations [17], [18], [4]

ξ2
N

{
∂2

∂x2
+

∂2

∂y2

}
ΦN −

|ω|
πTc

ΦN = 0, (5.1)

ξ2
F

{
∂2

∂x2
+

∂2

∂y2

}
ΦF −

ω̃

πTc
ΦF = 0, (5.2)

where ξ2
N,F = (DN,F/2πTc), DN,F , are diffusion coefficients, ω = πT (2n+ 1) are Matsubara

frequencies, ω̃ = |ω| + iH sgnω, H, is exchange energy of ferromagnetic material. The
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boundary conditions at SN and SF interfaces [18] are

γBNξN
∂

∂y
ΦN = ±G0∆exp

{
±i
ϕ

2

}
, y = L, 0, (5.3)

γBF ξF
∂

∂y
ΦF = ±

ω̃

|ω|
G0∆exp

{
±i
ϕ

2

}
, y = L, 0, (5.4)

where L is the distance between superconducting electrodes, G0 = ω/
√
ω2 + ∆2, ∆ is the

modulus of the order parameter of superconducting electrodes.

At the FN interface (x = 0) we also have [18]

ξN
|ω|

∂

∂x
ΦN = γ

ξF
ω̃

∂

∂x
ΦF , (5.5)

γBξF
∂

∂x
ΦF + ΦF =

ω̃

|ω|
ΦN , (5.6)

where γB = RB3AB3/ρF ξF , γ = ρNξN/ρF ξF , RB3 and AB3 are the resistance and area of

the NF interface. The boundary conditions at free interfaces

∂

∂x
ΦN = 0, x = dN , (5.7)

∂

∂x
ΦF = 0, x = −dF . (5.8)

come from the demand of an absence a current across them.

It is convenient to write the general solution of the boundary value problem (5.1)-

(6.8) in the form [8]

ΦN(x, y) = ΦN (y) +
∞∑

n=−∞

An(x) cos
πn(y − L)

L
, (5.9)

ΦF (x, y) = ΦF (y) +
∞∑

n=−∞

Bn(x) cos
πn(y − L)

L
, (5.10)

where ΦN (y) and ΦF (y) are asymptotic solutions of Eq.(5.9),(5.10) at the distance far from

FN interface

ΦN (y) = G0∆√
ΩγBN

(
cos ϕ

2
cosh L−2y

2ξNΩ

sinh L
2ξNΩ

−
i sin ϕ

2
sinh L−2y

2ξNΩ

cosh L
2ξN Ω

)
,

ΦF (y) =
√

eΩG0∆
ΩγBF

(
cos ϕ

2
cosh L−2y

2ξFΩ

sinh L
2ξFΩ

−
i sin ϕ

2
sinh L−2y

2ξFΩ

cosh L
2ξFΩ

)
, where ξNΩ = ξN/

√
Ω, ξFΩ =

ξF/
√

Ω̃, while functions An(x) and Bn(x) are solutions of appropriate one dimensional

boundary problem. The details of An(x) and Bn(x) determination are given in Appendix.

Substitution of the expressions (5.9),(5.10) into formula for the supercurrent, IS,

after routine calculations and several simplifications presented in Appendix in the most

interesting from the practical point of view situation is when

H ' πTC , ξF ) ξN , (5.11)
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results in sinusoidal dependence IS = IC sinϕ, where

IC =
2πT

e

dN

ξN

W

γ2
BNρN

Re
∞∑

ω>0

G2
0∆

2

ω2qξN sinh(qL)
, (5.12)

and inverse coherence length is given by

q =
1

ξN

√√√√√
ξN
dN

γ
√

Ω̃

γB

√
Ω̃ + coth

{
dF

ξF

√
Ω̃
} + Ω. (5.13)

It is necessary to note that in general the expression for the critical current except

summation over ω contains also summation over infinite number of inverse coherence lengths

which are the eigenvalues of boundary problem (5.1)-(6.8). As it is followed from estimations

given in Appendix under the restrictions on the distance L between superconductors

L >> Re

(
1

q
arctanh

1

γBNqξN

)
(5.14)

and on thickness of the N layer

ξ2
F

ηhξ2
N

<<
dN

ξN
<< η, (5.15)

where

η =






1
γ

√
γ2

B + γB

√
2h−1 + h−1,

fracdF ξF >> 1/
√

h,

1
γ

√
γ2

B + 2γB
ξF
dF

Ω
h2 +

ξ2F
d2

F h2 ,
dF

ξF
<< 1/

√
h.

(5.16)

and h = H/πTC the main contribution to IC comes from the item corresponding to the first

eigenvalue, q, which is given by expression (6.24) and for IC one can get formula (5.12).

From Eq. (5.11) it follows that q weakly depends on temperature. As a result a

change of temperature should weakly influence on decay length and period of IC oscillations

and mainly controls only the absolute value of the critical current (5.12). Neglecting in the

first approximation the dependence of q on Matsubara frequency one can easily get that

IC(T ) ∝ f(T ) = ∆ tanh(∆/T ).

It is necessary to point out that the experimentally studied parameters such as decay

length of IC as a function of L and period of IC oscillations should be mainly controlled by

the real and imaginary parts of inverse coherence length q calculated at ω = πT.

Below here will be detailed examination of behavior of inverse coherence length

q as a functions of geometrical and transport parameters of weak link. The calculated

dependencies do not only provide the knowledge, which is necessary to take into account for

design of S-FNF-S structures with input properties, but also will be useful for understanding

the features of IC(L, dF ) dependencies.

66



5.2 Properties of inverse coherence length q.

In the limit of thin F film dF/ξF << 1/
√

h expression (6.24) for q transforms into

result obtained in [8] in the limit ζN >> ζF :

q2 =
Ω

ξ2
N

+
(h2 + Ω2)ζ2

F + Ωξ2
F + ihξ2

F

ζ2
Nζ

2
F (h2 + (ξ2

F ζ
−2
F + Ω)2)

, (5.17)

where ζ2
F = γBdF/ξF , ζ2

N = γBdN/(ξNγ).

In the opposite case dF /ξF >> 1/
√

h from (6.24) we get

q =
1

ξN

√

Ω +
ξN
dN

γ

√
h

2

i + 1 +
√

2γB

√
h√

hγB(
√

2 + γB

√
h) + 1

. (5.18)

At temperature T = 0.5TC . the main contribution into the critical current is provided

by the term corresponding to the first Matsubara frequency (n = 0). For this reason in this

paragraph we will study the properties of inverse coherence length q for Ω = 0.5 that is the

value of Ω for (n = 0) and T/TC = 0.5.

In Figs. 5.2 and 5.3 solid curves show the real and imaginary parts of inverse

coherence length q as a function of dF /ξF calculated from (6.24) for two ratios of normal

film thickness dN/ξN = 0.01 and dN/ξN = 0.1.

The dotted lines in these figures are the same dependencies, which are followed from

asymptotic formula (5.17). All calculations were done for a set of parameters ξN/ξF = 10,

γ = 0.03, γB = 0.2, h = 30 which in accordance with analysis done in [8] provide the

maximum value for imaginary part of q at dF/ξF = 0.1, dN/ξN = 0.01 and dN/ξN = 0.1.

It is clearly seen that the solid and dotted curves are in close agreement for dF/ξF !

0.1. At dF/ξF " 0.4 the inverse coherence length starts to be practically independent of dF

reaching the value determined by (5.18). This fact is very important from practical point

of view. It says that the parameters of S-FN-S junctions do not deteriorate with increase

of dF , as it follows from the previously obtained [8] result (5.17) (see the dashed lines in

Fig.5.2, Fig.5.3). Moreover imaginary parts of q become very robust against the fluctuation

of ferromagnetic film thickness in the practically important interval dF/ξF " 0.4. From

Figs.5.2,5.3 one can also see that taking into account finite value of thicknesses of films

leads to some increase of decay length.

In Fig. 5.4 solid and dotted lines show the real and imaginary parts of inverse

coherence length q as function of dN/ξN calculated from (6.24) and (5.17), respectively, for

two ratio of ferromagnetic film thickness dF/ξF = 0.1 and dF /ξF = 1 and at the same set

of other parameters ( ξN/ξF = 10, γ = 0.03, γB = 0.2, Ω = 0.5, h = 30).
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Figure 5.2. Real part of q versus the thickness of F film dF/ξF for two values of dN/ξN =
0.1, 0.01 (solid lines for q calculated from (6.24), dotted limes for q calculated from formula
for thin films [8], dashed lines correspond to the limit oh thick F film (5.18) ) at ξN/ξF = 10,
Ω = 0.5, h = 30, γB = 0.2, γ = 0.03.

From the data it follows that an increase of thickness of normal film leads to an

increase of period of oscillations, which tends to infinity at large dN . The decay length also

increases with dN and for dF/ξF = 0.1 it practically approaches the value ξN/
√
Ω , that is

the decay length of the single normal film.

Figs. 5.5 and 5.6 show the real and imaginary parts of inverse coherence length q

as a function of γ and γB calculated at dN/ξN = 0.05 for ξN/ξF = 10, Ω = 0.5, h = 30. In

Fig. 5.5, γB = 0.1 and inset shows the same dependencies calculated for γB = 0.01. In Fig.

5.6, γ = 0.1, 0.03.

There is significant discrepancy between the curves calculated from the general ex-

pression (6.24) for q and from asymptotic dependence (5.17) for q previously obtained in [8].

This discrepancy the larger the smaller is the suppression parameter γB. This result is ob-

vious since the expression (5.17) is not valid at small γB. From direct comparison of the

curves we can conclude that in practically important range of γ " 0.1 within the accuracy

of 20% we may use the results of [8]- [10] for γB " 0.2.

Figure 5.7 shows the dependencies of real and imaginary parts of q upon thickness
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Figure 5.3. Imaginary part of q versus the thickness of F film dF/ξF for two values of
dN/ξN = 0.1, 0.01 (solid lines for q calculated from (6.24), dotted limes for q calculated
from formula for thin films [8], dashed lines correspond to the limit oh thick F film (5.18))
at ξN/ξF = 10, Ω = 0.5, h = 30,γB = 0.2, γ = 0.03.

of F film calculated for ξN/ξF = 10, Ω = 0.5, h = 30, γ = 0.03, dN/ξN = 0.05 and the

set of parameters γB = 0.2, 0.1, 0.01 (solid lines, dashed lines, dotted lines, respectively).

Inset in this figure shows the same dependencies obtained for smaller value of exchange

energy h = 5. It is clearly seen that Im(q) has a maximum as a function of dF/ξF . The

position of the maximum shifts to larger F layer thickness with γB decrease. At γB = 0.2

the maximum of imaginary part has the value max(Im(q)) ≈ 0.5ξN , which is achieved at

dF/ξF ≈ 0.1. For smaller suppression parameters γB = 0.1 (γB = 0.01) the maximum of

imaginary part equals to Im(q) ≈ 2/3ξF (max(Im(q)) ≈ ξF ) and is achieved at dF/ξF ≈ 0.13

and dF/ξF ≈ 0.2, respectively. Inset in Fig.5.7 also demonstrates that both position of the

maximum of Im(q) and its absolute value depend on exchange energy h. Decrease of h

shifts max(Im(q)) to larger ratio dF/ξF and simultaneously suppresses the value of this

maximum. From the structure of expression (6.24) for q it follows that its imaginary part

Im(q) has a maximum as a function of exchange energy h. Indeed, at h → 0 the period

of IC(L) oscillation tends to infinity, which is equivalent to Im(q) → 0. At large h the

imaginary part Im(q) ∝ h−1/2, that is also goes to zero with h increase. At dF/ξF " 0.4

69



Figure 5.4. Imaginary part of q versus the thickness of N film dN/ξN for two values of
dF/ξF = 0.1, 1 (solid lines for q calculated from (6.24) and dotted limes for q calculated
from formula for thin films [8]) at ξN/ξF = 10, Ω = 0.5, h = 30, γB = 0.2, γ = 0.03. Inset
shows real part of q versus the thickness of N film dN/ξN at the same parameters.

both Im(q) and Re(q) saturate and practically become independent on F layer thickness.

Figure 5.8 shows the dependence of Im(q)/ Re(q) as a function of dF /ξF . The cal-

culations have been done for γB = 0.01, ξN/ξF = 10, Ω = 0.5, and for two values of

suppression parameter γ = 0.03 (solid line), γ = 0.1 (dotted line). The values of exchange

energy h have been equal to 10 and 30, as it is marked in Fig.5.8 by arrows. The curves

presented in Fig.5.8 can be also used for minimization of period of IC oscillations. Actually,

the maximum of ratio Im(q)/ Re(q) corresponds to the minimum decay per one period. It is

obvious that this maximum is located near maximum of Im q. Therefore the position of this

maximum shifts to smaller dF with increase of exchange energy or suppression parameter

γ.

If we want to fix the value of max(Im q) in the vicinity of ξN and to shift this

maximum to the largest dF , we should choose suppression parameter γB in the range of

0.01 (for large dF ) and perform the fitting procedure in order to estimate suppression

parameter γ and exchange energy h. For instance, we may find that for h = 30 maximum

of Im(q) is of the order of ξN and it is achieved for γ = 0.03 at dF/ξF ≈ 0.18, while for
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Figure 5.5. Real and imaginary parts of q versus the parameter γ (solid lines for q calculated
from ( 6.24) and dotted limes for q calculated from formula for thin films [8]) at ξN/ξF = 10,
Ω = 0.5, h = 30, dF/ξF = 0.5, dN/ξN = 0.05 and γB = 0.1. Inset shows the same
dependence at γB = 0.01 and the same other parameters.

h = 10, γ = 0.03 the maximum is shifted to dF/ξF ≈ 0.3. The smaller the exchange energy

the thicker should be the thickness of F film to get Im(q) in the range of ξN . Thus for h = 5,

γ = 0.09 the maximum is achieved at dF /ξF = 0.45. From the data presented in

Fig.5.7 and Fig.5.8 it follows that for all mentioned above sets of parameters the

ratio Im(q)/ Re(q) ≈ 0.6 and does not exceed this value.

For thick F film dF/ξF >> 1/
√

h the maximum of Im(q)/Re(q) is achieved at small

γB → 0, h >> Ω and γξN/dN

√
h/2 >> Ω and this maximum relation is Im(q)/Re(q) ∼

0.4.

5.3 Thickness dependence of the critical current.

The critical current (5.12) of the studied S-FN-S Josephson junction (see Fig.5.9)

is a function of two arguments. They are the distance between superconducting electrodes

L/ξN and the thickness of ferromagnetic film dF/ξF . The dependence of IC(L/ξN , dF/ξF )

have shown in Fig.5.9. It has been calculated from (5.12), (6.24) for h = 10, dN/ξN = 0.05,

γB = 0.01, γ = 0.03, γBF /γBN = 1 and T = 0.5TC .
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Figure 5.6. Real and imaginary parts of q versus the parameter γB (solid lines for q cal-
culated from ( 6.24) and dotted limes for q calculated from formula for thin films [8]) at
ξN/ξF = 10, Ω = 0.5, h = 30, dF/ξF = 0.5, dN/ξN = 0.05 and two values of γ = 0.1, 0.03.

In the limit dF → 0 period of critical current oscillations tends to infinity (see Fig.

5.9) and IC decays monotonically with L, as it must be for SNS Josephson junctions. With

dF , increase (see Fig. 5.10) the dependence of critical current as a function of L/ξN has the

form of damped oscillations. The decay length of these oscillations is different for different

thickness of F film. The most intensive suppression is localized in the vicinity of dF/ξF ≈ 0.6

since Re(q) has maximum at this thickness of F layer. It is seen that the suppression of IC is

smaller for thicker (dF > 0.6ξF ) and thinner (dF < 0.6ξF ) F films. Period of IC oscillations

decreases with dF achieving the smallest value at dF/ξF ≈ 0.3. Further increase of dF results

in increase of this period. Finally in the range of thickness dF/ξF > 0.5 both period of

IC oscillations and decay length are nearly constant. In the interval of F layer thickness

dF/ξF " 1 the position of zeros of IC(L, dF ) undergoes oscillations as a function of dF (see

insert in Fig.5.10). They take place around values L = Ln, under which IC(Ln, dF ) = 0 at

dF ' ξF . The amplitude of these oscillations decays with increase of dF . It is interesting to

mention that the larger is Ln, the more intensive are the amplitudes of the oscillations. This

behavior can be easily understood from the form of q(dF ) dependence (6.24). In the vicinity

of L = Ln the critical current is small due to the 0-π transition of IC as a function of L.

72



Figure 5.7. Real and imaginary parts of q versus the thickness of F film dF /ξF for γB =
0.2, 0.1, 0.01 (solid, dashed and dotted lines) at ξN/ξF = 10, Ω = 0.5, h = 30, γ = 0.03,
dN/ξN = 0.05. Inset shows the same dependence for h = 5.

Under this condition any small variations of q, which occur due to factor coth
(
dF

√
Ω̃/ξF

)

in (6.24) start to be important giving rise to the discussed IC(L, dF ) behavior.

Figure 5.11 shows the IC(L, dF ) dependencies calculated at fixed values of L under

h = 10, dN/ξN = 0.05, γB = 0.01, γ = 0.03, γBF /γBN = 1 and T = 0.5TC .

In the small L domain the properties of the S-FN-S junction do not depend on the

structure of weak link region. The critical current IC is practically independent on dF , so

that there is no transition from zero to π state on IC(dF ). With the increase of L the IC(dF )

dependence becomes apparent (see Fig.5.9) resulting in suppression of IC . This suppression

is different for different thicknesses of F film. The strongest suppression is realized in the

vicinity of dF /ξF ≈ 0.3. This fact is illustrated in Fig.5.11(a) by the line corresponding to

the ratio L/ξN = 1.3. It is seen that at this value of L/ξN the suppression of IC is smaller

for thicker (dF > 0.3ξF ) and thinner (dF < 0.3ξF ) F films. At L/ξN ≈ 1.67 and dF ≈ 0.3ξF

the magnitude of critical current for the first time reaches zero, while the sign of IC does

not change.

With further increase of L the L/ξN , dF /ξF plane starts to be subdivided into two

regions separated by the line along which the junction critical current is equal to zero. The
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Figure 5.8. Ratio of imaginary part of q to its real part versus the thickness of F film dF /ξF
for two values of γ = 0.03, 0.1 (solid and dotted lines) at ξN/ξF = 10, γB = 0.01, dN/ξN =
0.05, Ω = 0.5, and h = 30, 10.

boundary between the regions has two branches (see Fig.5.12). The first one is located at

dF < 0.3ξF . It starts from the first critical point (Lc1/ξN , dF,c1/ξF ) ≈ (1.67, 0.3) and dF,c1

the smaller the larger is L. The second branch located at dF > 0.3ξF . It starts from the

same critical point and for large dF asymptotically verge towards the line L = L1 exhibiting

damped oscillation around it. As a result, any cross-section presented in Fig.5.9 dependence

of IC(L/ξN , dF/ξF ) by a perpendicular to L axis plane in the region 1.67 < L/ξN < 2.87

should give a dependence of IC(dF ) having the typical shape shown by solid line (L/ξN =

1.8) in Fig.5.11(a). It demonstrates that in this range of distances between S electrodes

(1.67 < L/ξN < 2.87) for any given L there is a nucleation of only one π state in between

of two zero states in IC(dF ) dependence. The interval of dF in which the π state exists,

becomes wider the larger the L. Note also that for 1.67 < L/ξN < 2.87 only 0 -state can

be realized for large dF/ξF " 0.8.

The number of transitions between zero and π states in IC(dF ) increases by asymp-

totically approaching the line L = L1. This is illustrated in Fig.5.11(b). At (L/ξN = 2.6)

there are still only two transitions, namely, from 0-state to π-state and from π to zero state.

At (L/ξN ≈ 2.8702) in the zero state domain there is nucleation of the next critical point at
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Figure 5.9. Normalized absolute value of critical current versus the thickness of F film
dF/ξF and distance between the superconducting electrodes L/ξN for γ = 0.03, γB = 0.01,
ξN/ξF = 10, dN/ξN = 0.05, h = 10, γBN/γBF = 1, T = 0.5TC .

dF/ξF ≈ 1.7. In it IC = 0, while the sign of IC is kept positive for all dF/ξF " 0.8. Further

increase of L leads to generation of additional π state in the vicinity of dF /ξF ≈ 1.7 as it is

shown in Fig.5.11(b) by solid line. The closer L to L1 the larger is the amount of zero to π

transitions. As it was already pointed above, this behavior of critical current at L/ξN ≈ L1

is a result of small oscillations of Im(q) which occur at large dF . Note that in the region

L = L1 − 0 S-FN-S junction always is in the zero state at dF → ∞.

Contrary to that, for L = L1 +0 it is π state that is finally established in the limit of

large dF (see the dotted line for L/ξN = 2.8729 in Fig.5.11(c)). Further increase of L leads

to the reduction of thickness intervals in which the zero states exists. They collapse one by

one with L. The last stage of this process is shown in Fig. 5.11(c). It is seen that transition

from (L/ξN = 2.8729) to (L/ξN = 2.92) leads to reduction of the zero state located in

vicinity of dF/ξF = 1. At (L/ξN ≈ 2.95) it completely shrinks, so that IC becomes always

negative at dF/ξF " 0.2. As a result in the distance interval 3.5 ! L/ξN ! 6.5 the typical

shape of IC(dF ) dependence for a fixed L has the form of the curve presented in Fig.5.11(c)

by the line calculated for L/ξN ≈ 3.5. There is only one 0-π transition, which occurs at
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Figure 5.10. Normalized absolute value of critical current versus the distance between
electrodes L/ξN for γ = 0.03, γB = 0.01, ξN/ξF = 10, dN/ξN = 0.05, h = 10, γBN/γBF = 1,
T = 0.5TC for several thicknesses of F film dF/ξF = 0.05, 0.3, 0.6, 1.Insert shows the same
dependence for dF/ξF = 1.5, 1.8, 2, 2.2.

dF/ξF ≈ 0.2. It is the first branch of the locus of point at which IC = 0 on L/ξN , dF/ξF

plane.

It is seen from Fig.5.9, Fig.5.12 that at L/ξN ≈ 6.5 and dF/ξF ≈ 0.32 there is a

nucleation of the next critical point. Again the two branches start to propagate from it.

They produce the next boundary on L/ξN , dF/ξF plane, thus subdividing this plane into

three regions.

The first branch is located at dF/ξF ! 0.32. It propagates along L nearly parallel to

the already existing in this domain branch generated at critical point Lc1/ξN , dF,c1/ξF ) ≈

(1.67, 0.3). In the narrow zone between these branches the junction is in the π state. The

second branch is located at dF > 0.32ξF . Starting from the second critical point for large dF

it asymptotically verges towards the line L = L2 = 10.089 exhibiting damped oscillations

around it. Quantitatively the behavior of IC(L, dF ) in the vicinity of L = L2 and at slightly

larger L is the same as we discuss above. There is increasing number of zero to π transitions

as soon as L → L2−0 and the collapses of π states in the L = L2+0 region with L increase.

Finally in the interval 10.32 ! L/ξN ! 11.5 there are only two transitions of IC(dF ) and at
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Figure 5.11. Normalized absolute value of critical current versus the thickness of F film
dF/ξF for γ = 0.03, γB = 0.01, ξN/ξF = 10, dN/ξN = 0.05, h = 10, γBN/γBF =
1, T = 0.5TC for several distances between the superconducting electrodes L/ξN =
1.3, 1.67, 1.8, 2.6, 2.8702, 2.8705, 2.8729, 2.95, 2.95, 3.5.

dF/ξF " 0.012 there is only zero state of the critical current.

5.4 Conclusion

In this Chapter Josephson effect in S-FN-S structures under condition of relatively

large suppression parameters γBN and γBF at SN and SF interfaces was discussed. General

expression for the critical current of these structures, applicable for arbitrary values of

suppression parameters at FN interface and in the practically important case of relatively

thin normal film and arbitrary thickness of a ferromagnetic layer were derived. It is shown
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Figure 5.12. (L, dF ) phase diagram for S-FN-S junction at γ = 0.03, γB = 0.01, ξN/ξF =
10, dN/ξN = 0.05, h = 10, γBN/γBF = 1, T = 0.5TC .

that the critical current of the junction, IC , exhibits damped oscillations as a function of a

distance L between S electrodes. It was demonstrated that for typical values of exchange

energy h ≈ 30 and in the limit of thin F and N layers ((dF ! 0.1ξF and dN ! ξN) the

results obtained for the critical current cross over to the previously derived in [8]. It is

qualitatively clear that the considerations performed in [9]- [10] for more sophisticated S-

FNF-S Josephson junctions are also valid in this parameter range. Further increase of

dN results in increase of both period of IC(L) oscillations and its decay length. The 0-

π transition point shifts to larger L, so that the properties of the structure continuously

transform into those of S-N-S devices.

Increase of dF is accompanied by more complicated processes. The period of IC

oscillations and the decay length have minima as a function of dF . The maximum value of

dF at which these minima can be achieved for typical values of h is dF /ξF ! 0.6.

In the practically interesting range of F layer thickness dF " ξF the dependence of

IC(L) is qualitatively the same as previously found in [8]. There is continuous transition

from zero to π state with increase of L. Noticeable exceptions are narrow intervals of L

located in the vicinity of L = Ln, where Ln is the distance at which IC(Ln, dF ) = 0 for

dF ' ξF (see insert in Fig.5.10 and Fig.5.11). In these intervals the position of the point at

which IC = 0 exhibits damping oscillations as a function of dF and number of transitions
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from 0 to π states in IC(L, dF ) increases under L → Ln. Outside these intervals sign and

value of IC are independent on dF for dF " ξF . This fact is very important for possible

applications of S-FN-S Josephson junctions and S-FNF-S spin valve Josephson devices.

These calculations have shown that to fabricate the proposed S-FNF-S structures it

is favorable to have the thickness of the N film in the range dN ≈ 0.1 ÷ 0.2ξN . For typical

decay length high-conductivity metals, ξN , of the order of 100 nm this restriction results in

dN ≈ 10÷20 nm. This range of dN thicknesses is ordinary used in fabricating SNS Josephson

devices. In our particular case this interval of thicknesses provides the required coupling

strength between the polarized electron subsystems in the two F films, and simultaneously

such dN range is sufficient to support superconducting correlations induced into from the

S electrodes.

From the data presented in Fig.6 it also follows that the smaller is the suppression

parameter γB at the FN interface, the smaller is the decay length of IC and the period of its

oscillations. Typical values of specific boundary resistance at a sharp metal interface [19],

RBA ≈ 10−11 Ωcm2, and typical values of ρF ξF product are close to each other resulting in

γB ! 1. Increase of γB does not strongly influence the decay length, which tends to ξN when

γB goes to infinity. Contrary to that, the period of IC oscillations depends stronger on γB.

It goes to infinity in the limit of large γB thus preventing the experimental observation of

0 to π transition. Therefore we may conclude that the smaller is suppression parameter γB

the stronger is the interaction of polarized electrons in the N film of S-FNF-S junctions and

the better are the conditions for realization of effects predicted in [8]- [10].

It is also necessary to note that in these calculations we have chosen the suppression

parameter γ equal to 0.03 or 0.1. For small γB, this suppression parameter has to be small

in order to prevent strong suppression of superconductivity induced into N film due to the

proximity with the F films. For γ ! 0.1 the superconducting correlations in the F films are

supported due to the proximity effect and the back influence of F films on superconductivity

in the N part of FNF trilayer is small. The conclusion about smallness of γ comes also from

inequality (5.15). For dN/ξN ≈ 0.1, dF/ξF ≈ 1, h ≈ 30 and γB → 0 the rough estimate

from inequality (5.15) gives γ << 2.

The restriction γ ! 0.1 is not too strong since for typical values of ρNξN and ρF ξF

products their ratio just provides the necessary small values for the γ parameter.

Finally,t his analysis shows that for practically interesting interval of F layer thick-

ness dF " ξF the parameters of S-FNF-S spin valve devices are very robust to variations

79



of dF if the distance between superconductors is not very close to the critical points Ln, at

which the IC = 0.

5.5 Appendix

5.5.1 Solution of linearized Usadel equations

It is convenient to write the general solution of the boundary value problem (5.1)-

(6.8) in the form

ΦN(x, y) = ΦN (y) +
∞∑

n=−∞

An(x) cos
πn(y − L)

L
, (5.19)

ΦF (x, y) = ΦF (y) +
∞∑

n=−∞

Bn(x) cos
πn(y − L)

L
, (5.20)

where ΦN (y) and ΦF (y) are asymptotic solutions of Eq.(5.1),(6.32) at the distance far from

FN interface

ΦN (y) = G0∆√
ΩγBN

(
cos ϕ

2
cosh L−2y

2ξNΩ

sinh L
2ξNΩ

−
i sin ϕ

2
sinh L−2y

2ξNΩ

cosh L
2ξN Ω

)
,

ΦF (y) =
√

eΩG0∆
ΩγBF

(
cos ϕ

2
cosh L−2y

2ξFΩ

sinh L
2ξFΩ

−
i sin ϕ

2
sinh L−2y

2ξFΩ

cosh L
2ξFΩ

)
, where ξNΩ = ξN/

√
Ω, ξFΩ =

ξF/
√

Ω̃, while functions An(x) and Bn(x) satisfy the following boundary problem

ξ2
N

∂2

∂x2
An(x) − u2

nAn(x) = 0, (5.21)

ξ2
F

∂2

∂x2
Bn(x) − v2

nBn(x) = 0, (5.22)

γB

γ
ξN

Ω̃

Ω

∂

∂x
An(0) −

Ω̃

Ω
An(0) + Bn(0) = Rn, (5.23)

γBξF
∂

∂x
Bn(0) + Bn(0) −

Ω̃

Ω
An(0) = Rn, (5.24)

Rn =
Ω̃

Ω

G0∆

L
κn

(
e

iϕ
2 + (−1)ne

−iϕ
2

)
, (5.25)

∂

∂x
An(dN) = 0,

∂

∂x
Bn(−dF ) = 0. (5.26)

Here Ω = |ω|/πTC, Ω̃ = ω̃/πTC and

κn =
1

γBN

ξN
u2

n

−
1

γBF

ξF
v2

n

, (5.27)

un =

√(
πnξN

L

)2

+ Ω, vn =

√(
πnξF

L

)2

+ Ω̃. (5.28)
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Solution of (5.21)-(5.26) has the form

An(x) = −
RnγvnΩcosh

{
x−dN

ξN
un

}

Ω̃δn sinh undN

ξN

, (5.29)

Bn(x) =
Rnun cosh

{
x+dF

ξF
vn

}

δn sinh vndF

ξF

, (5.30)

where δn is defined as:

δn = γBvnun + un coth
vndF

ξF
+ γvn coth

undN

ξN
(5.31)

5.5.2 Calculation of supercurrent across S-FN-S junction.

To calculate the supercurrent across the S-FN-S junction we substitute of the ex-

pressions (5.19)-(5.20), (5.29)-(5.31) into formula for the general formula for supercurrent

IS(x, y) =
−iπTW

eρF

∞∑

ω=−∞

1

ω̃2

ˆ 0

−df

[
Φ∗

−ω,F

∂

∂y
Φω,F

]
−

−
iπTW

eρN

∞∑

ω=−∞

1

ω2

ˆ dn

0

[
Φ∗

−ω,N

∂

∂y
Φω,N

]
.

The calculations gives IS = IC sinϕ, where

IC =
∆2πTWγ

eρN

∞∑

ω=−∞

G2
0

ω2

[
6∑

j=1

kjSj+ (5.32)

+
dF√

Ω̃ξNγ2
BF sinh L

ξFΩ

+
dN/γ√

ΩξNγ2
BN sinh L

ξNΩ





and W is a width of junction in the direction perpendicular to axes 0y and 0x. The last

two items in (5.32) determine the critical current of the structures with ether ferromagnetic

(SFS) or normal (SNS) interlayers [4], [15]- [18]. By Sj we define the ordinary and double
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sums:

S1 =
∞∑

n=−∞

nκnun sin πn2
vnδn

, S2 =
∞∑

n=−∞

nκnvn sin πn2
unδn

,

S3 =
∞∑

n=−∞

κnun cos πn2
vnδn

, S4 =
∞∑

n=−∞

κnvn cos πn2
unδn

,

S5 =
∞∑

n,m=−∞

Cnmunum

sinh vndF

ξF
sinh vmdF

ξF

Iv,

S6 =
∞∑

n,m=−∞

Cnmvnvm

sinh umdN

ξN
sinh undN

ξN

Iu, (5.33)

Iv =
sinh (vn+vm)dF

ξF

vn + vm
+

sinh (vn−vm)dF

ξF

vn − vm
,

Iu =
sinh (un+um)dN

ξN

un + um
+

sinh (un−um)dN

ξ
N

un − um
,

Cnm =
n sin πn2 cos πm2 κmκn

δmδn
,

and coefficients kj are

k1 =

√
Ω̃ξ2

FΩπ

γBF L2 sinh L
2ξFΩ

, k2 =
−
√
Ωξ2

NΩπ

γBNL2 sinh L
2ξNΩ

,

k3 =

√
Ωξ2

NΩπ

γBNL2 sinh L
2ξNΩ

, k4 =
−ξN

γBNL cosh L
2ξNΩ

, (5.34)

k5 =
πξNξ2

F

L3
, k6 = γ

πξ3
N

L3
.

Expressions (6.14)-(5.34) are the main mathematical result of this work and are the

subject of more detailed analysis given below. They give the general expression for the

critical current of S-FN-S Josephson structure.

5.5.3 Critical current of S-FN-S junction.

To calculate the sums (5.33) we may use the procedure known from the theory of

functions of complex variables

∞∑

n=−∞

f(n) sin(πn/2) =
π

2

∑

k

res(f(zk))

cos(π/2zk)
, (5.35)

∞∑

n=−∞

f(n) cos(πn/2) = −
π

2

∑

k

res(f(zk))

sin(π/2zk)
, (5.36)

where res(f(zk)) is residue of function f(z) at the critical point zk. From (5.33) it follows

that there are critical points zu = ±iL
√
Ω/(ξNπ) and zv = ±iL

√
Ω̃/(ξFπ), which are the
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roots of equations u(z) = 0, and v(z) = 0, respectively. In addition there is also an infinite

number of zk, which are the roots of equation:

δ(z) = 0. (5.37)

Applying the procedure (5.35)-(5.36) to calculation of (5.33) it is possible to show that the

last two terms in expression for IC (5.32) are exactly compensated by the parts of these

sums, which are calculated from the residue at critical points z = zu and z = zv. Therefore

critical current (5.32) can be expressed as the sum of terms resulting from the application

of the rule (5.35)-(5.36) to ( 5.33) at z = zk.

Our analysis have shown that the value part of zk consists of a root having the

lowest real part, z = zmin, and the two systems of roots. In the first system, zk,N , there

is an item in the real part of zk,N , which at large k increase with the number k of the

root as kξN/dN , while in the second, zk,F , this increase is proportional to kξF/dF . Below

we will restrict ourselves to the consideration of the limit at which zmin makes the major

contribution to the junction critical current, i.e. |zmin| << |zk|. It can be shown that

the lowest value among the roots of zk,F group is achieved at the limit of large dF and is

bounded by
√

Ω̃L/(πξF ). The lowest value of second group of the roots, zk,N , is bounded

by
√
ξ2
N/d2

N − Ω(L/(πξN)), the value at which zk,N are approached to in the limit of small

γ. Thus under the condition

|zmin| << |
√

Ω̃L/(πξF )|, (5.38)

|zmin| << |
√
ξ2
N/d2

N − Ω(L/(πξN))| (5.39)

we can rewrite equation (5.37) in the form

u2 = −
ξN
dN

γ
√

Ω̃

γB

√
Ω̃ + coth

{
dF

ξF

√
Ω̃
} (5.40)

and for zmin finally get

zmin = i
L

πξN

√√√√√
γ
√

Ω̃

γB

√
Ω̃ + coth

{
dF

ξF

√
Ω̃
} ξN

dN
+ Ω. (5.41)

Note, that the imaginary parts of the roots of both groups (zk,F , zk,N) do not exceed their

real parts. It means that inequality (5.39) guarantees the smallness of Re zmin compared

to Re(zk,F , zk,N).
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Assuming further that the total contribution to IC from the all the residues at critical

points zk≥1 is small compared to that at z = zmin

∣∣∣∣Re
1

zmin sinh πzmin

∣∣∣∣ >> ΣF + ΣN , (5.42)

ΣF (N) =

∣∣∣∣∣
Re

∑

k

1

zk,F (N) sinh πzk,F (N)

∣∣∣∣∣
(5.43)

we arrive at the following expression for IC :

IC =
4πT

e

W

γ2
BNρN

γ Re
∞∑

ω>0

G2
0∆

2k2 (SF + SN)

D2ω2qξN sinh(qL)
, (5.44)

SF =
ξ2
F

ξ2
N

[
1 +

2vdF

ξF
sinh−1 2vdF

ξF

]
u2

v
coth

vdF

ξF
,

SN = γ

[
1 +

2udN

ξN
sinh−1 2udN

ξN

]
v2

u
coth

udN

ξN
,

where u =
√

Ω− q2ξ2
N , v =

√
Ω̃− q2ξ2

F , and characteristic inverse coherence length q is

given by

q =
1

ξN

√√√√√
ξN
dN

γ
√

Ω̃

γB

√
Ω̃ + coth

{
dF

ξF

√
Ω̃
} + Ω. (5.45)

The coefficients k and D in (5.44) have the form

k =
1

u2
−
γBN

γBF

ξF
ξN

1

v2
,

D =

(
dN

ξN
+ γ

ξ2
F

ξ2
N

dF

ξF

)
coth

udN

ξN
coth

vdF

ξF
+

+

(
γBv

dN

ξN
+
ξ2
F

ξ2
N

γ

v

)
coth

udN

ξN
+

+

(
γBu

dF

ξF

ξ2
F

ξ2
N

+
1

u

)
coth

vdF

ξF

+
v

u

(
γB + γ

dN

ξN

)
+
ξ2
F

ξ2
N

u

v

(
γB +

dF

ξF

)
. (5.46)

From (5.39) and (5.41) it follows that the approximation (5.45) for q is valid if

ξ2
F

ηhξ2
N

<<
dN

ξN
<< η, (5.47)

where

η =






1
γ

√
γ2

B + γB

√
2h−1 + h−1,

fracdF ξF >> 1/
√

h,

1
γ

√
γ2

B + 2γB
ξF
dF

Ω
h2 +

ξ2F
d2

F h2 ,
dF

ξF
<< 1/

√
h.

(5.48)
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where h = H/πTC sgnω. To get (5.47) we additionally restricted ourselves by considering

the most interesting from practical point of view situation when

h >> T/TC , ξF << ξN . (5.49)

It follows from inequalities (5.47) and (5.48) that the range of validity of expression (5.41)

is the larger, the smaller is the parameter γ and thickness of F film dF or the larger is γB.

At γ = 0 or γB → ∞ rigid boundary conditions take place at NF interface and expression

(5.41) is valid for arbitrary thickness of the normal film.

From (5.42)-(5.43) it follows that in the limit of thin F and N films, dF /ξF << 1/
√

h

and dN/ξN << 1/
√
Ω, the result (5.44)-(5.46) is valid if the conditions (5.47) are fulfilled.

The inequality (5.42) provides also the restriction on the thickness dF and dN of

F and N films. Physically, it comes from the fact that with dF (dN) increase the full

supercurrent flowing across F (N) film is enlarged proportionally to dF (dN). Therefore the

smallness of this current component compared to contribution to IC , which is accumulated

in vicinity of FN interface, results in

dF Re(q) << exp

{
L

ξF

√
h

}
. (5.50)

dN Re(q) << exp

{

L

(√
Ω

ξN
− q

)}

. (5.51)

Finally we should take into account that the form of the boundary conditions (6.2) is

valid for relatively large γBN thus providing additional restriction for application of (5.44),

which sets the limit on the distance between superconducting electrodes

L >> Re

(
1

q
arctanh

1

γBNqξN

)
. (5.52)

From (5.45), (5.49), (5.52) it follows that inequality (5.50) is always fulfilled for experimen-

tally reasonable thickness of F layer and does not apply a serious restriction on the use of

(5.44).

Taking into account the inequality (5.47) we can further simplify the expression for

the critical current (5.44) and transform it into the formula

IC =
2πT

e

dN

ξN

W

γ2
BNρN

Re
∞∑

ω>0

G2
0∆

2

ω2qξN sinh(qL)
, (5.53)

in which the dependence of IC(dF ) enters only via functional dependence q(dF ) determined

by (5.45). It is important to note that to use expression (5.53) it is enough to be in the

range of parameters, which guarantees the implementation of (5.47).
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Chapter 6

Josephson effect in superconductor/ferromagnet

structures with different geometries

Introduction

Among the most appealing recent experimental results are: the first obser-

vation of double suppression of superconductivity in Nb/CuxNi1−x bilayers (x =

0.59), which provides evidence for a multiple reentrant superconducting state [4]; the

demonstration of existence of a long-range proximity effect predicted in [3] in Nb-

Cu/PdNi/Cu/CoReCo/Cu/PdNi/Cu-Nb Josephson junctions, where the direction of mag-

netization vector in antiferromagnetically oriented CoReCo block does not coincide with

that of PdNi films, thus creating a weak link region with artificially rotated magnetization

vector [5]; the first observation [6] of strong critical temperature suppression in S-FNF struc-

tures under a small off-orientation of magnetization vectors in initially antiferromagnetically

ordered FNF block, which is a sequent of generation of long-range triplet component pro-

viding a strong connection of NF part of the multilayer to the S film [12]; visualization

of supercurrent spatial distribution in SIFS devices with various arrangements of 0 and π

segments [7].

Despite of noticeable achievement in understanding of the physical background of

superconducting spin valves, in which either critical temperature TC or critical current IC

is controlled by mutual off-orientation of magnetization vectors M1,2 of individual F films

located inside of a spin valve, they are still far from practical realization. Among the reasons

are relatively large values of exchange energies H in F films resulting in very fast decay of

superconducting correlations into a ferromagnet [13], [14], as well as the problems in supply

of off-orientation of M1,2 in Josephson spin valves.

Recently [8] - [11] it has been shown that both problems can be effectively solved

in novel types of S-FN-S and S-FNF-S Josephson junctions. In these structures the weak

link region consists of FN or FNF multilayer which separates the superconducting banks,

while a supercurrent flows in the direction parallel to FN interfaces and is injected across
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the end-walls of FN or FNF structure. There are two kinds of proximity effects in these

junctions. The first one is the penetration of superconductivity into normal metal from

superconducting electrodes. The second one is the suppression of the induced supercon-

ductivity due to interaction between N and F layers. It is obvious that for nontransparent

NF interfaces the S-FNF-S junction should have the same characteristics as that of SNS

devices and the decay length of superconducting correlations into the complex weak link

region should coincide with that for the normal metal, ξN , if the distance between super-

conducting electrodes L are larger than the scale ξF1 of superconductivity decay into F

films. In [8]- [11] it was also shown that switching on interaction between N and F metals

results in generation of a set of decay lengths. Moreover, it was demonstrated that it is

possible to find the conditions under which at least one among these lengths has both real

and imaginary parts of the order of ξN . In S-FNF-S Josephson devices there is no limitation

on thickness of N film and it can be made thin enough to realize an effective control upon

the junction parameters by changing the mutual orientation of magnetization vectors of

ferromagnetic films [10].

The choice of junction geometry considered in [8]- [11] was based on existing concept

[15], [16], that in such ramp type configuration the critical current IC is larger than in

overlap geometry, when S electrodes are located on the top of weak link multilayer. In

this paper Chapter this statement is reconsidered andit is demonstrated that it valid only

for the fully transparent interfaces between S electrodes and a weak link region. Three

different geometries of Josephson junctions: (1) SN-NF-NS devices which consist of two SN

complex electrodes connected by NF weak region; (2) SNF-N-FNS structures, in which N

film connects two SNF complex electrodes and (3) SNF-NF-FNS junctions with S electrodes

located on the top of FN bilayer are studied. Critical currents of these Josephson structures

in the framework of linearized Usadel equations for arbitrary length of complex electrodes

will be discussed and then it will be compared with the results for the above three cases and

those obtained in [8] - [11] in order to determine the geometry which provides the largest

magnitude of the critical current. Also in this Chapter it will be demonstrated that 0-π

transition in the considered structures can be driven not only by variation of distance L

between S electrodes, as predicted by known models, but also by changing the length d of

the SNF overlap region.
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6.1 New geometry of SFNS junctions

Consider multilayered structures presented in Fig.1 and Fig.2. They consist of su-

perconducting electrodes with the length d deposited on the top either a single N film

or on NF bilayer. The bilayer consists of ferromagnetic (F) and normal metal (N) films

having a thickness dF , and dN respectively (see Fig.6.2). The junctions shown in Fig.6.1b

and Fig.6.2d are the structures having ramp type geometry intensively studied previously

(see [1] - [3], [15] and [8] - [11]). The width of layers in the direction perpendicular to the

current flow is equal to W and the distance between electrodes is L. For simplicity it is

suggested below that the parameters γBN and γBF which characterize the transparency of

NS and FS interfaces are large enough to neglect the suppression of superconductivity in S

part of the proximity system.

S SN

N

S S

d

L

dN

a)

b)

Figure 6.1. a) SN − N − NS junction, b) the SNS junction.

N

S S

F

N

S S

F
N

S S

F F

S SN
F

a)

b)

c)

d)

Figure 6.2. a) SNF − NF − FNS junction, b) the SN − NF − NS junction, c) the
SNF − N − FNS junction, d) the S − NF − S junction.

Under the above conditions for dirty limit the problem of calculation of the critical

current in the structures reduces to solution of the set of linearized Usadel equations [1]
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- [3], [17]

ξ2
N

{
∂2

∂x2
+

∂2

∂y2

}
ΦN − ΩΦN = 0,

ξ2
F

{
∂2

∂x2
+

∂2

∂y2

}
ΦF − Ω̃ΦF = 0, (6.1)

where Ω = |ω|/πTc, Ω̃ = (|ω| + iHsign(ω))/πTc, ξ2
N,F = (DN,F/2πTc), DN,F , are diffusion

coefficients, ω = πT (2n + 1) are Matsubara frequencies, H, is exchange integral of ferro-

magnetic material. The x and y axis have been chosen in the directions perpendicular and

parallel to the plane of N film and put the origin in the middle of structure at FN interface

(Fig.6.2a,b,d) or at the lower free interface of N film (Fig.6.1, Fig.6.2c).

Equations (6.1) must be supplemented by the boundary conditions [18]. For the

structures presented in Fig.6.1b, Fig.6.2d they have the form

γBNξN
∂

∂y
ΦN = ±G0∆exp

{
±i
ϕ

2

}
, y = ±L/2,

γBF ξF
∂

∂y
ΦF = ±G0∆exp

{
±i
ϕ

2

}
, y = ±L/2, (6.2)

while for the junctions presented in Fig.6.1a and Fig.6.2a,b,c they can be written as

γBNξN
∂

∂x
ΦN = G0∆exp

{
±i
ϕ

2

}
, x = dN . (6.3)

At SF interfaces (see Fig.6.2d) we also have

γBF ξF
∂

∂y
ΦF = ±

Ω̃

Ω
G0∆exp

{
±i
ϕ

2

}
, y = ±L/2. (6.4)

Here L is the distance between superconducting electrodes, G0 = ω/
√
ω2 + ∆2, ∆ is the

modulus of the order parameter of superconducting electrodes.

At the FN interface located at (x = 0) the boundary conditions have the form [18]

ξN
Ω

∂

∂x
ΦN = γ

ξF

Ω̃

∂

∂x
ΦF , (6.5)

γBξF
∂

∂x
ΦF + ΦF =

Ω̃

Ω
ΦN , (6.6)

where γB = RB3AB3/ρF ξF , γ = ρNξN/ρF ξF , RB3 and AB3 are the resistance and area of

the NF interface.

The boundary conditions at free interfaces come from the demand of an absence a

current across them and reduce to equality to zero of appropriate derivatives, e.g. for the

junction presented in Fig.6.2d they look as

∂

∂x
ΦN = 0, x = dN , (6.7)

∂

∂x
ΦF = 0, x = −dF . (6.8)
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The formulated above boundary problems can be reduce from two-demensional to

one-dimensional in the limit of small thicknesses of N and F films

dN ) ξN , dF ) ξF . (6.9)

This procedure have been described in detail in [8] - [10], and the range of its validity has

been examined in [11]. Below we will apply the developed in [8] - [10] approach to the

junctions presented in Fig.6.1, Fig.6.2 mostly being concentrated on the discussion of the

obtained results. The details of calculations are summarized in Appendix.

6.2 Critical current of SN-N-NS Josephson junction

The expressions for the critical currents, ISNS
C , ISN−N−NS

C , of SNS junction shown

in Fig.6.1 are well known in the considered model [1]. They have the form

I
SNS

C = K
dN

ξN

∞∑

n=0

Γ

q sinh(qL)
, (6.10)

I
SN−N−NS

C =
K

ξNdN

∞∑

n=0

Γ sinh2(qd)

q3 sinh(q(L + 2d))
, (6.11)

where coefficient K = (2πTW )/(RBNABNγBNe), q = ξ−1
N

√
Ω is inverse decay length and

Γ = ∆2/(ω2 + ∆2).

As it is shown in Appendices A-C expression (6.11) is also followed from the more

general formula for critical current of SNF-NF-SNF devices shown in Fig.6.2a in the limit

of small thickness of F film (dF → 0).

The ratio of these two critical currents, I
SN−N−NS

C /I
SNS

C , is visualized in Fig.6.3 as a

function of thickness of normal layer, dN , for several lengths of complex electrode d/ξN =

0.5, 1, 10. It is clearly seen that there are intervals of parameters under which critical current

of SN-N-NS junction can essentially exceed of ISNS
C . The physics of this effect is evident.

In the considered limit of small SN interfaces transparency for ramp type geometry

(Fig.6.1a) under condition L >> 1/q the magnitude of induced into N metal ΦN functions

at SN interfaces is close to

ΦN (dN) =
G0∆

γBNξNq
, γBNξNq >> 1, (6.12)

while in the case of overlap geometry (Fig.6.1b) for dN << 1/q magnitude of ΦN functions

induced into N metal is in the first approximation on dN/ξN independent on coordinate x
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Figure 6.3. I
SN−N−NS

C /I
SNS

C versus thickness of N film dN/ξN for d/ξN = 0.5, 1, 10,L/ξN = 2,
T/TC = 0.5.

and is equal to

ΦN(dN) =
G0∆

γBNξNq2dN
, γBNξNq2dN >> 1. (6.13)

From (6.12), (6.13) it immediately follows that the large factor γBN in (6.13) can be renor-

malized by a small ratio of dN/ξN thus leading to effective increase of superconductivity at

the interface between the N film and SN composite electrode compare to the strength of

superconducting correlations at SN boundary of SNS ramp type devices.

6.3 Critical current of devices with F film in weal link

region

To calculate the critical current of the junctions shown in Fig.6.2 under conditions

(6.9) one have to solve the boundary problem (6.1) - (6.7) and substitute the obtained

solution into general formula for supercurrent:

IS =
−iπTW

eρF

∞∑

ω=−∞

1

ω̃2

ˆ 0

−dF

[
Φ∗

−ω,F

∂

∂y
Φω,F

]
−

−
iπTW

eρN

∞∑

ω=−∞

1

ω2

ˆ dN

0

[
Φ∗

−ω,N

∂

∂y
Φω,N

]
. (6.14)
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The details of this procedure are allocated in Appendix.

It is shown there that in the practically interesting limit of strong N film

ζN >> ζF , ξN >> ξF . (6.15)

the critical current of SNF-NF-FNS (Fig.6.2a), SN-NF-NS (Fig. 6.2b) and SNF-N-FNS

(Fig. 6.2c) structures

I
SNF−NF−F NS

C =
K

ξNdN
Re

∞∑

n=0

ΓUq1 sinh2(q1d)

sinh(q1(L + 2d))
, (6.16)

I
SN−NF−NS

C =
K

ξNdN
Re

∞∑

n=0

Γq1

q4(Qq,q1
+ Pq,q1

)
, (6.17)

I
SNF−N−F NS

C =
K

ξNdN
Re

∞∑

n=0

ΓUq

Qq1,q + Pq1,q
(6.18)

can be expressed by formulas (6.16), (6.17) and (6.18), respectively. Here functions Q(α, β),

P (α, β), and U are defined as

Qa,b =
2 coth (ad) cosh (bL) b

a
, (6.19)

Pa,b = sinh (bL)

(
1 +

b2 coth2 (ad)

a2

)
, (6.20)

U =

(
v2ζ2

F ζ
2
N

1 − v2u2ζ2
F ζ

2
N

)2

, (6.21)

where q1 is fundamental wave vector of the problem:

q2
1 =

1

2
[u2 + v2 −

√
(u2 − v2)2 + 4ζ−2

F ζ−2
N ], (6.22)

while u and v

u2 =

(
1

ζ2
N

+
Ω

ξ2
N

)
, v2 =

(
1

ζ2
F

+
Ω

ξ2
F

+ i
h

ξ2
F

)
, (6.23)

are partial wave vectors. The parameters ζF and ζN are the coupling constants ζ2
F =

γBdF ξF , ζ2
N = γBdNξN/γ, which describe the mutual influence of N and F films on su-

perconducting correlations in the junction.

Strictly speaking the formulas (6.16), (6.17), (6.18) are valid in the limit of thin N

and F films (6.9). However making use of the formalism developed in [11] it is possible to

prove that all of them can be also valid for arbitrary thickness of F film if one simply use in

(6.16), (6.17), (6.18) the more general expression for fundamental wave vector q1, namely

q1 =
1

ξN

√√√√√
ξN
dN

γ
√

Ω̃

γB

√
Ω̃ + coth

{
dF

ξF

√
Ω̃
} + Ω. (6.24)
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Expressions (6.16), (6.17), (6.18) can be simplified in several practically interesting

cases.

In the limit of large d (d >> 1/q, 1/q1) both coth(qd) → 1 and coth(q1d) → 1. As

a result for SN-NF-NS and SNF-N-NFS junctions one may use the same formulas (6.17),

(6.18) with more simple forms of functions Q(α, β) and P (α, β)

Qa,b =
2 cosh (bL) b

a
, (6.25)

Pa,b = sinh (bL)

(
1 +

b2

a2

)
, (6.26)

while for SNF-NF-FNS junction

I
SNF−NF−F NS

C =
1

2

K

ξNdN
Re

∞∑

n=0

ΓUq1 exp(−q1L). (6.27)

In the limit of large distance L between S electrodes, L >> 1/q, 1/q1 the main

contribution to the sums in (6.16), (6.17), (6.18) comes from the first item and for the

critical current of SNF-NF-FNS, SN-NF-NS and SNF-N-NFS one can get, respectively:

I
SNF−NF−F NS

C =
2K

ξNdN
Re

∞∑

n=0

ΓUq1 exp(−q1L)

(1 + coth(qd))2
(6.28)

I
SN−NF−NS

C =
2K

ξNdN
Re

∞∑

n=0

Γq1 exp(−q1L)

q2 (q + q1 coth(qd))2 , (6.29)

I
SNF−N−F NS

C =
2K

ξNdN
Re

∞∑

n=0

ΓUqq2
1 exp (−qL)

(q1 + q coth (q1d))2 . (6.30)

Below the obtained results (6.16), (6.17), (6.18) will be compared with the the value

of the critical current calculated in [8] for ramp type SFNS junction

I
SF NS

C = K
dN

ξN
Re

∞∑

n=0

Γ
(1 − 1

q2
1
−v2

γBN

γBF

ξN
ξF ζ2N

)2

q1 sinh(q1L)
. (6.31)

It is necessary to mention that in the limit of decoupled F and N films (γB → ∞)

expressions for the critical currents (6.16, 6.17, 6.18) reduce to the formula for SN-N-NS

devices (6.11), while the critical current of SFNS ramp type structure (6.31) transforms to

that (6.10) valid for SNS junctions.

Fig.6.4-Fig.6.9 show the phase diagrams for critical current, which in (L/ξN ,d/ξN)

plane gives the information about the sign of Ic. In the areas marked in Fig.6.4-Fig. 6.9 by 0

and π the critical current is positive (0-state) and negative (π-state), correspondingly, while

the lines give the point curves at which Ic = 0. The position of these curves in (L/ξN ,d/ξN)

plane also depends on relative thickness (dF /ξF and dN/ξN) of both F and N films.
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The phase diagrams for SNF-N-FNS structures are given in Fig.6.4 and Fig.6.5. In

this geometry there is the only N film in the region between SNF multilayers. The inverse

coherence length q = ξ−1
N

√
Ω in N film is real, therefore there are no oscillations of critical

current in the structure.

The calculations show that in this case there can be only one curve on the (L/ξN ,

d/ξN) plane, at which Ic = 0 for fixed other parameters. The existence of only one point

curve for SNF-N-FNS structure can be understood from the following argumentations.

Contrary to well studied SFS junctions the coherence length in the part of weak link region of

SNF-N-FNS devices located between SNF electrodes is real, thus preventing the oscillations

of function ΦN in that region of the N film. The oscillations of condensate function exist

only in the NF part of weak link located under the S electrodes. Obviously, under these

circumstances the sign of Ic must be only controlled by value of condensate function at

the boundary between the SNF electrodes and the N film connecting them. This value

of condensate function determines two complex coefficients, A1, and, A2, (see (6.58) and

(6.59)). In combination with nonoscillatory decay of ΦN function into the N film from the

SNF electrodes these coefficients provide only two choices for the sign of Ic and only one

curve at which Ic = 0. This is in contrust to SFS devices with F film in between of S -

electrodes. In the latter case the sign of Ic depends also on relation between the geometrical

size of a junction and the imaginary part of the coherence length (the period of oscillations

of the order parameter). It is combination of these two factors that provides the opportunity

to have multiple changes of Ic sign and infinite number of curves at (L/ξN ,d/ξN) plane at

which Ic = 0.

Therefore in the considered SNF-N-FNS structures there is only one of these two

factors and only one opportunity for Ic to change its sign, which can be realized or not

depending on the parameters of the structure.

The position of the transition curve calculated for fixed ratio dN/ξN = 0.1 and several

values of dF/ξF = 0.04, 0.1, 0.2 is show in Fig.6.4. The location of the curve depends on dF

by nonmonotonic way. At dF = 0 there is only 0-state in the structure. With the increase

of dF , the curve first shifts to the left bottom corner of the phase diagram, then it turns

back and at some critical value of dF it tends to infinity, thus providing only 0-state in the

structure with further dF increase. Such nonmonotonic behavior is due to nonmonotonic

behavior of q1 from (6.24).

Figure 6.5 shows (L/ξN ,d/ξN) phase diagram calculated for fixed ratio dF /ξF = 0.1
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Figure 6.4. (L/ξN ,d/ξN) phase diagram for SNF-N-FNS structure for dF/ξF = 0.04, 0.1, 0.2
(solid, dashed, dotted lines) at γ = 0.1, γB = 0.1, dN/ξN = 0.1, ξN/ξF = 10, T/TC = 0.5,
H/πTC = 30.

and several values of dN/ξN = 0.05, 0.1, 0.2. It is seen that with dN increase the point

curves at which Ic = 0 shifts in the direction to the right corner of diagram providing the

increase of area for 0 state. This fact can be understood if one takes into account that

under fixed dF the lager is N layer thickness the smaller is the influence of the F layer on

the junction properties. It is obvious that at dN " ξN the critical current of SNF-N-FNS

junction will tends to that of SN-N-NS since the current will flow in the areas located closer

to S electrodes thus decreasing the probability to have SNF-N-FNS structure in the π state.

Also it is important to mention that at some fixed parameters only 0-state or π-state can

be realized for any L, and at some fixed parameters only 0-state can be realized for any d.

The phase diagrams for SN-FN-NS structures are given in Fig.6.6 and Fig.6.7. Figure

6.6 presents the data calculated under fixed value of dN/ξN = 0.1 for a set of ratio dF/ξF =

0.08, 0.1, 0.2, while Fig.6.7 gives diagram obtained under fixed value of dF/ξF = 0.1 for a

set of parameters dN/ξN = 0.08, 0.1, 0.15. In this geometry there is the only N film in the

complex SN electrodes. The inverse coherence length q in N film is real value. Consequently

both 0 and π-states in SN-FN-NS junctions can be realized due oscillatory behavior of

superconducting correlations in NF region inside the weak link area, which connects SN

electrodes. So there are infinite number of point curves. The point curves at which Ic = 0

looks like practically vertical lines thus demonstrating weak influence of overlap distance d
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Figure 6.5. (L/ξN ,d/ξN) phase diagram for SNF-N-FNS structure for dN/ξN = 0.05, 0.1, 0.2
(solid, dashed, dotted lines) at γ = 0.1, γB = 0.1, dF/ξF = 0.1, ξN/ξF = 10, T/TC = 0.5,
H/πTC = 30.

on alternation of 0 and π states in the junction.

Finally, Fig. 6.8, Fig. 6.9 give (L/ξN ,d/ξN) phase diagrams for SNF-FN-FNS junc-

tions. In these structures coherence lengths are complex both under superconductor in

complex SNF electrodes and in NF part of weak link region. The appearance of 0 or π

state in this case depends also on matching these oscillations at SNF/NF boundary. As a

result the point curves at which Ic = 0 are not as vertical as them one can see in Fig. 6.6,

Fig. 6.7 thus demonstrating their strong dependence on both lengths L/ξN and d, and the

0−π transition with d increase is not so sensetiv to L variations as for SN-FN-NS structure.

Fig. 6.10 shows dependence of absolute value of normalized critical currents of SNF-

NF-FNS, SNF-N-FNS, SN-NF-NS and SFNS junctions as a function of L/ξN for infinite

length of SN interface d. It is seen that at given magnitude of L/ξN critical current of SN-N-

NS junction, I
SN−N−NS

C , has the maximum value among all others. This fact is obvious since

in this structure there is no additional suppression of superconductivity provided by the F

film. If we compare the value of IC far from the 0 - π transition points for all other con-

sidered structures, then we may have I
SN−F N−NS

C > I
SNF−N−F NS

C > I
SNF−F N−F NS

C > I
S−F N−S

C .

This sequence of values are due to consecutive increase of suppression of superconductivity

provided by F film.

In SN-FN-NS junctions in the considered region of parameters the superconducting

correlations are suppressed by F film only in weak link region, thus providing the large
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Figure 6.6. (L/ξN ,d/ξN) phase diagram for SN-FN-NS structure for dF/ξF = 0.08, 0.1, 0.2
(solid, dashed, dotted lines) at γ = 0.1, γB = 0.1, dN/ξN = 0.1, ξN/ξF = 10, T/TC = 0.5,
H/πTC = 30.

value of IC . In SNF-N-FNS junctions the critical current is smaller than in SN-FN-NS

devices due to suppression of superconductivity in SNF part of the structure. Due to it

the decay of superconducting correlations into N part of weak link starts from the values,

which are smaller than in SN-FN-NS devices.In SNF-FN-FNS devices there is suppression of

superconductivity in all parts of structure by F film. Finally in SNFS ramp type structures

the critical current has the smallest value. In SN-N-NS and SNF-N-FNS junctions IC decays

with L without oscillations. However as it follows from the phase diagram presented in Fig.

6.4, under the chosen set of parameters the SNF-N-FNS structure is the π state, so that its

critical current is negative, while SN-N-NS is always in 0-state.

The decay length in NF part of SN-FN-NS, SNF-FN-FNS and SNFS devices is com-

plex providing damping oscillations of IC as a function of L. The period of these oscillations

and their decay length are the same for all the junctions and controlled by bulk properties

of NF part of weak link. The initial conditions for these oscillations at SN/NF, SNF/FN

and S/NF interfaces are different resulting in shift of the oscillations along L axis.

Figure 6.11 shows the amplitude of critical current of SNF-FN-FNS, SN-FN-NS,

SNF-N-FNS structures versus the length of SN interface in complex electrodes calculated

under fixed ratio of L/ξN = 2.

From the presented curves it follows that critical currents have a tendency to increase

with d as tanh2(d/ξN), while at large d they arrive at independent on d values.
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Figure 6.7. (L/ξN ,d/ξN) phase diagram for SN-FN-NS structure for dN/ξN = 0.08, 0.1, 0.15
(solid, dashed, dotted lines) at γ = 0.1, γB = 0.1, dF/ξF = 0.1, ξN/ξF = 10, T/TC = 0.5,
H/πTC = 30.

The continuous support of superconductivity from the S electrodes along all the SN

interfaces results in considerable difference between IC(L) and IC(d) dependencies. The

last may have only one sign change of IC as a function of d.

It is also necessary to note that maximum of IC in IC(d) dependence maybe not

necessarily achieved in the limit of d → ∞. For instance, at dN/ξN = 0.2 and d/ξN = 0.5

(see Fig. 6.11c) the magnitude of IC is fifty times larger compared to the value, which is

reached at d → ∞. This strong enhancement may be important for practical applications

of these structures.

6.4 Conclusion

In this Chapter three types of SFNS Josephson junctions with different geometries of

electrodes (S electrodes are on the top of N film) and weak links are considered. Analytical

expressions for critical currents of these structures were derived. These expressions are

valid in the limit of thin normal and ferromagnetic films, hence one can use expressions for

critical currents with more accurate formula for inverse coherence length (6.24) for films

with arbitrary thickness.

The ramp type junctions are not absolutely favorable both from technological and

applicable points of view, critical current IC of SN-NF-NS, SNF-NF-NFS or SNF-N-NFS
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Figure 6.8. (L/ξN ,d/ξN) phase diagram for SNF-FN-FNS structure for dF/ξF =
0.07, 0.08, 0.1 (solid, dashed, dotted lines) at γ = 0.1, γB = 0.1, dN/ξN = 0.1, ξN/ξF = 10,
T/TC = 0.5, H/πTC = 30.

junctions can be even large compared to that in the ramp type structures under the same

suppression parameters at NS interface and distance between S electrodes. The largest value

of critical current can be achieved in SN-NF-NS junction in which there are no additional

suppression from F film under S electrode.

In such structures 0−π transition takes place not only under increase of the distance

between the superconducting electrodes, but also as a result of the length change of the area

of Cooper pair injection under the S electrodes. Hence there is single transition compared to

multiple transitions with the increase of L. In SNF-N-FNS structures, in which coherence

length of weak link is not complex, the critical current can change sign as a function of

distance between superconducting electrodes.

In ramp type devices the weak link area is determined by geometrical factors, namely

by the distance L between superconducting electrodes. Under conditions, which minimizes

suppression of superconductivity in the S electrodes, the initial values of anomalous Green’s

function at SN and SF interfaces are strongly fixed by the boundary conditions and tran-

sition from 0 to π states in IC(L) dependence is a result of interplay between the complex

value of decay length into NF bilayer and its geometrical size L.

In the structures presented in Fig.6.2 a,b,c under the same quality of SN interfaces,

the area of the weak link may not coincide with the distance between superconducting

banks since suppression of superconductivity induced into NF bilayer can occur due to
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Figure 6.9. (L/ξN ,d/ξN) phase diagram for SNF-FN-FNS structure for dN/ξN =
0.04, 0.05, 0.07 (solid, dashed, dotted lines) at γ = 0.1, γB = 0.1, dF /ξF = 0.1, ξN/ξF = 10,
T/TC = 0.5, H/πTC = 30.

proximity effect between this bilayer and the part of weak link which is not covered by a

superconductor. It means that the boundary conditions at SNF/NF interfaces are soft and

do not fix the initial conditions for IC(L) dependence thus providing additional degree of

freedom responsible for 0 to π transition in the considered structures. This feature is most

clearly revealed in SNF-N-FNS junctions. In these devices the decay length in the part of

N film located between SNF electrodes is a real quantity, which prevents the oscillations

of function ΦN in that region of the N film. However, 0 to π transition may take place

in these structures under a change of their transport parameters despite of the absence of

oscillations of function ΦN in the area between SNF electrodes. It is worth to mention that

in the last case there is a possibility for only a single 0 to π transition. From practical

point of view it means that making use of SNF-N-FNS geometry provides an opportunity

to fabricate a junction definitely in the π state keeping simultaneously large value of its

critical current.

The second important conclusion of this consideration is demonstrated in Fig. 6.10 .

One can see that the absolute values of the critical current of the considered devices exceed

those in SNFS ramp-type junctions. This difference comes from the fact that in ramp-

type configuration superconducting correlations are induced directly into the interelectrode

coupling area through the cross section of N and F films. In the considered limit of small

SN interface transparency this results in small values of superconducting correlations (on
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Figure 6.10. IC for SN-N-NS, SFNS, SNF-N-FNS, SN-FN-NS, SNF-FN-FNS structures
versus L/ξN calculated for ξN/ξF = 10, T/TC = 0.5, H/πTC = 30, dN/ξN = 0.1, dF/ξF =
0.1.

the order of ∆/γBN ) induced in the vicinity of S/N interface. Contrary to that, in the

overlap geometry the superconducting correlations induced into the area located under S

electrode can be large enough, on the order of ∆/(γBNdN/ξN) if dN is considerably smaller

than ξN .

6.5 Appendix

6.5.1 Calculation of supercurrent for SNF-NF-FNS junction.

To calculate critical current of SNF-NF-FNS Josephson junction in the framework of

formulated model it is enough to solve linearized Usedel equations for condensate functions

of normal (ΦN ) and ferromagnetic (ΦF ) films in weak link region, as well as for condensate

functions in N films under left (ΦN1) and right (ΦN2) superconducting electrodes. These

equations have the form

ξ2
N

{
∂2

∂x2
+

∂2

∂y2

}
ΦN,N1,N2 − ΩΦN,N1,N2 = 0,

ξ2
F

{
∂2

∂x2
+

∂2

∂y2

}
ΦF,F1,F2 − Ω̃ΦF,F1,F2 = 0. (6.32)
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They should be supplemented by the boundary conditions on SN interfaces at x = dN

γBNξN
∂

∂x
ΦN1,N2 = G0∆exp∓iϕ/2, (6.33)

where sign minus (plus) should be chosen for left (right) S electrode. At FN interface

located at x = 0 the boundary conditions have the form:

ξN
Ω

∂

∂x
ΦN,N1,N2 = γ

ξF

Ω̃

∂

∂x
ΦF,F1,F2, (6.34)

γBξF
∂

∂x
ΦF,F1,F2 + ΦF1 =

Ω̃

Ω
ΦN,N1,N2, (6.35)

while at free interfaces

∂

∂y
ΦN1,N2 = 0, y = ∓(L/2 + d) (6.36)

∂

∂y
ΦF1,F2 = 0, y = ∓(L/2 + d)

∂

∂x
ΦF,F1,F2 = 0, x = −dF (6.37)

∂

∂x
ΦN = 0, x = dN (6.38)

they follow from the demand of preventing a current flow across them. Finally at the

interfaces between complex electrodes and weak link region (at y = ∓L/2) all the functions

and their first derivatives should be continuos:

∂

∂y
ΦN1,N2 =

∂

∂y
ΦN , (6.39)

ΦN1,N2 = ΦN , (6.40)

∂

∂y
ΦF1,F2 =

∂

∂y
ΦF , (6.41)

ΦF1,F2 = ΦF . (6.42)

In the considered limit of thin F and N films

dN ) ξN , dF ) ξF ,

the two-dimensional boundary problem (6.32) - (6.42) can be reduced to a one-dimensional

one. To do so we suppose that in the main approximation condensate functions do not

depend on the coordinate x,

ΦN,N1,N2 = AN,N1,N2(y), ΦF,F1,F2 = BF,F1,F2(y), (6.43)
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and that their derivatives with respect to x can be expressed as follows:

∂ΦN,N1,N2

∂x
=

{
Ω

ξ2
N

AN,N1,N2 −
∂2AN,N1,N2

∂y2

}
(x − dN),

∂ΦF,F1,F2

∂x
=

{
Ω̃

ξ2
F

BF,F1,F2 −
∂2BF,F1,F2

∂y2

}

(x + dF ). (6.44)

After substitution of (6.43) and (6.44) into the boundary conditions (6.34), (6.35) we

arrive at one-dimensional differential equations in respect to functions AN,N1,N2(y) and

BF,F1,F2(y). Solution of thus obtained one-dimensional boundary problem for the weak link

region can be expressed in the form:

AN = A1 cosh (q1y) + A2 sinh (q1y)+

+
β

ζ2
N

Ω

Ω̃
(B1 cosh (q2y) + B2 sinh (q2y)) (6.45)

BF = B1 cosh (q2y) + B2 sinh (q2y)−

−
β

ζ2
F

Ω̃

Ω
(A1 cosh (q1y) + A2 sinh (q1y)) (6.46)

where fundamental wave vectors of the problem:

q2
1,2 =

1

2
[u2 + v2 ∓

√
(u2 − v2)2 + 4ζ−2

F ζ−2
N ], (6.47)

u2 =

(
1

ζ2
N

+
Ω

ξ2
N

)
, v2 =

(
1

ζ2
F

+
Ω̃

ξ2
F

)

, (6.48)

and ζ2
F = γBdF ξF , ζ2

N = γBdNξN/γ, β = (q2
1 − v2)−1.

The appropriate solutions for F and N films located under S electrodes are

AN1,N2 = A11,12 cosh(q1y) + A12,22 sinh(q1y)+

+
β

ζ2
N

Ω

Ω̃
(B11,12 cosh(q2y) + B12,22 sinh(q2y)) − Ne∓iϕ/2 (6.49)

BF1,F2 = B11,12 cosh(q2y) + B12,22 sinh(q2y)−

−
β

ζ2
F

Ω̃

Ω
(A11,12 cosh(q1y) + A12,22 sinh(q1y)) − Fe∓iϕ/2 (6.50)

The integration coefficients in (6.45), (6.46), (6.49), and (6.50) can be found by

substituting these expressions into the boundary conditions. This procedure leads to

A1 =
cos(ϕ/2) sinh(q1d)

sinh(q1(L/2 + d))

Fβζ−2
N − N

ν + 1
, (6.51)

A2 =
i sin(ϕ/2) sinh(q1d)

cosh(q1(L/2 + d))

Fβζ−2
N − N

ν + 1
,

B1 = −
cos(ϕ/2) sinh(q2d)

sinh(q2(L/2 + d))

Nβζ−2
F + F

ν + 1
,

B2 = −
i sin(ϕ/2) sinh(q2d)

cosh(q2(L/2 + d))

Nβζ−2
F + F

ν + 1
,
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where

N =
1

ξNdN

2v2ζ2
Nζ

2
F

1 − 4v2u2ζ2
Nζ

2
F

G0∆

γBN
,

F =
Ω̃

Ω

1

ξNdN

ζ2
N

1 − 4v2u2ζ2
Nζ

2
F

G0∆,

γBN
,

and ν = β2ζ−2
N ζ−2

F .

By substituting of the solution (6.45), (6.46), (6.51) into general formula for super-

current (6.14) we obtain the expression for supercurrent in the SNF-NF-FNS structure:

IS = (IC1 + IC2) sin(ϕ), (6.52)

where

IC2 =
Kζ2

F ζ
2
N

ξNdN
Re

∞∑

ω=0

q2Γ (1 + v2β)2 (ν + 1)−1 sinh(q2d)2

(1 − v2u2ζ2
F ζ

2
N)2 sinh(q2(L + 2d))

,

IC1 =
K

ξNdN
Re

∞∑

ω=0

q1Γ (v2ζ2
F ζ

2
N − β)2 (ν + 1)−1 sinh(q1d)2

(1 − v2u2ζ2
F ζ

2
N)2 sinh(q1(L + 2d))

,

and Γ = ∆2/(Ω2 + ∆2).

In the limit ζN >> ζF , ξN >> ξF , the part of the full critical current,IC2, is small,

so that the magnetidute of IC of SNF-NF-FNS structure is reduced to

I
SNF−NF−F NS

C =
K

ξNdN

∞∑

ω=0

Re
ΓUq1 sinh(q1d)2

sinh(q1(L + 2d))
.

6.5.2 Calculation of supercurrent for SNF-N-FNS junction.

To calculate supercurrent across SNF-N-FNS junction we should sligtly change the

procedure discribed in Appedix A by taking into account the appearance of additional three

interfaces in the structure. Since the current can not flow across them instead of (6.42) we

should use

∂

∂y
ΦF1,F2 = 0, y = ∓L/2, −dF ≤ z ≤ 0, (6.53)

∂

∂x
ΦN = 0, x = 0, −

L

2
≤ y ≤

L

2
. (6.54)

In the limit of thin F and N films dN ) ξN , dF ) ξF , the of solution of Usadel equations

in the N film of weak link has more simple form compare to (6.45):

AN = A1 cosh (qy) + A2 sinh (qy) , (6.55)
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while in FN bilayer under S electrodes it closes to that of (6.49), and (6.50)

AN1,N2 = A11,12 cosh(q1y) + A12,22 sinh(q1y)+

+
β

ζ2
N

Ω

Ω̃
(B11,12 cosh(q2y) + B12,22 sinh(q2y)) − Ne∓iϕ/2, (6.56)

BF1,F2 = B11,12 cosh(q2y) + B12,22 sinh(q2y)−

−
β

ζ2
F

Ω̃

Ω
(A11,12 cosh(q1y) + A12,22 sinh(q1y)) − Fe∓iϕ/2. (6.57)

The integration constants in (6.55), (6.56), (6.57) can be found from the boundary condi-

tions. In particular for A1 and A2 one can get

A1 =
−N cos {ϕ/2}(

Qq1, q
2

+ νQq2, q
2

)
/ (ν + 1) tanh qL

2 + cosh qL
2

, (6.58)

A2 =
−iN sin {ϕ/2}(

Qq1, q
2

+ νQq2, q
2

)
/ (ν + 1) + sinh qL

2

. (6.59)

Substitution of (6.55), (6.58), (6.59) into general formula for supercurrent:

IS = −
iπTW

eρN

∞∑

n=−∞

1

ω2

ˆ dN

0

[
Φ∗

−ω,N

∂

∂y
Φω,N

]

in the limit ζN >> ζF , ξN >> ξF leads to

I
SNF−N−F NS

C =
K

ξNdN
Re

∞∑

n=0

ΓUq

Qq1,q + Pq1,q
, (6.60)

where functions Qq1,q and Pq1,q are determined by Eq. (6.19) and (6.20), respectively.

6.5.3 Calculation of supercurrent for SN-NF-NS junction.

To calculate of supercurrent across SN-FN-NS junction we should change the pro-

cedure discribed in Appedix A by taking into account the abcence of F film in complex

SN electrode. To do this the boundary conditions (6.42) in appropriate regions should be

replaced by

∂

∂y
ΦF = 0, y = ∓L/2, . − dF ≤ x ≤ 0, (6.61)

∂

∂x
ΦN1,N2 = 0, x = 0, .

L

2
≤ |y| ≤

L

2
+ d (6.62)

In the limit of thin F and N films dN ) ξN , dF ) ξF , solution of the boundary problem

in the weal link can be found in the form

AN = A1 cosh (q1y) + A2 sinh (q1y)+
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+
β

ζ2
N

Ω

Ω̃
(B1 cosh (q2y) + B2 sinh (q2y)) , (6.63)

BF = B1 cosh (q2y) + B2 sinh (q2y)−

−
β

ζ2
F

Ω̃

Ω
(A1 cosh (q1y) + A2 sinh (q1y)) , (6.64)

while for it in the N films located under S electrodes they are

AN1,N2 = A11,12 cosh(q1y) + A12,22 sinh(q1y) − Ne∓iϕ/2. (6.65)

Integration constants A1, A2, B1, B2 in (6.63) - (6.65) can be found from the boundary

conditions resulting in

A1 =
cos {ϕ/2} q−2G0∆/(ξNdNγBN)

cosh q1L
2 +

(
νQ q2

2
,
q1
2
/2 + Qq,

q1
2

(ν + 1)
)

tanh q1L
2

,

A2 =
i sin {ϕ/2} q−2G0∆/(ξNdNγBN)

sinh q1L
2 + ν tanh2

(
q2L
2

)
Q q2

2
,
q1
2

/2 + Qq,
q1
2

(ν + 1)
, (6.66)

B1 = A1
1

ζ2
F

β
ω̃

|ω|
q1 sinh (q1L/2)

q2 sinh (q2L/2)
, (6.67)

B2 = A2
1

ζ2
F

β
ω̃

|ω|
q1 cosh (q1L/2)

q2 cosh (q2L/2)
. (6.68)

Substituting this result into general formula for supercurrent (6.14) in the limit

ζN >> ζF , ξN >> ξF we arrived at the following formula for critical current of the SN-FN-

NS junction

I
SN−NF−NS

C =
K

ξNdN
Re

∞∑

n=0

Γq1

q4(Qq,q1
+ Pq,q1

)
.
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Figure 6.11. IC for a) SNF-FN-FNS, b) SN-FN-NS, c) SNF-N-FNS structures versus d/ξN
calculated at ξN/ξF = 10, T/TC = 0.5, H/πTC = 30, dF/ξF = 0.1, L/ξN = 2.
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Summary

The main goal of this thesis is to present theoretical study of physical foundations

for creation of fundamentally new devices for nanoelectronics, spintronics and supercon-

ducting electronics. Superconducting spintronics is a rapidly developing area of modern

nanoelectronics. Significant interest is due to new fundamental effects in structures con-

taining ferromagnetic and superconducting layers, as well as the possibility of utilizing these

effects for the spin valves. There are serious restrictions on the operating parameters of

known prototypes of superconducting spin valves, in which control of the critical current

and critical temperature is possible. As a consequence, there is a need to improve their

performance by exploring new design solutions based on the characteristic features of the

proximity effect in S / F heterostructures. Another class of spin switches uses the idea

of changing the critical current in SFS Josephson junctions by creating conditions for the

generation of triplet order parameter components which are odd functions of the electronic

energy. Research on the triplet superconducting correlations that arise in multilayered

structures containing superconducting, normal, and ferromagnetic layers is very timely for

creation of a new class of effective spin-valves.

In Chapters 2 and 3, on the basis of the microscopic theory of superconductivity,

analysis of processes in Josephson nanostructures which area multilayered structures con-

sisting of alternating layers of normal (N) and ferromagnetic (F) metals, was performed.

Considerable interest in such Josephson structures is due to the fact that they are important

for the creation of a new type of spin valves and so-called π- junctions with a negative value

of the critical current IC . Currently fabricated structures with F layers have typical scale of

decay of the critical current and period of oscillations in the range of few nanometers. This

fact considerably complicates the practical use of such structures. In Chapters 2 and 3 a so-

lution to this problem is offered. This solution allows to increase characteristic dimensions

by almost two orders of magnitude. It also shows that both the magnitude and sign of the

critical current can be controlled by changing the mutual orientation of the magnetization

vectors of individual F films of FNF multilayer structures in Josephson junctions. This

work transforms the problem of interplay of ferromagnetism and superconductivity from a
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purely fundamental to practical area.

In Chapter 4, FNF structures with the magnetization of ferromagnets, oriented at

an arbitrary angle relative to each other, were investigated. In such structures the triplet

component of the spectrum of the superconducting correlations arises. In Chapter 4, the

fact is proven that the triplet component in S-(FNF)-S junctions leads to the emergence of a

new type of π - contact. This π - contact arises from the superposition of two contributions

to the critical current which do not oscillate with junction length. The presence of such

π - contact can be used as an experimental confirmation of the existence of the triplet

component. It was also found that the effective control of magnitude and sign of the

critical current of S-(FNF)-S spin valves can be achieved at small angles of rotation of

the magnetizations from the antiferromagnetic configuration, which is more energetically

favorable than the complete remagnetization of the structure.

In Chapters 2-4, results were obtained for limiting case when N and F films are thin

in comparison with their coherence lengths. In an experimental situation, this condition

is easily achieved for a normal metal. However, its realization for the ferromagnetic layers

presents certain difficulties. It is for this reason, in Chapter 5, the effect of finite thick-

ness of the ferromagnetic films and normal S-FN-S transition in the critical current was

analyzed. It is shown that for an arbitrary film thickness, the critical current oscillates as

a function of the distance between superconducting electrodes, hence the damping length

and oscillation period depend strongly on the thickness of the films. Thus, for arbitrary

thickness of the films the results obtained in the thin film limit are also qualitatively appli-

cable. If the thickness of F is larger than the coherence length, then the damping length

and the oscillation period do not depend on the thickness of the F film. For thickness of

a ferromagnet much larger than its coherence length, one can define critical distances Ln

when IC changes sign. It is shown that for thickness of ferromagnet comparable to the

coherence length, strong variations of IC occur as a function of thickness of the F film if the

distance between superconducting electrodes L is close to Ln. These results are important

from a practical point of view, because one can create junctions with parameters that do

not depend on the spread of geometric and transport parameters of structures, the inherent

in any technological process.

A second major technological constraint on the fabrication of the S-FN-S and S-FNF-

S structures proposed in Chapters 2-3 was that they are ramp type junctions. In practice it

is much more convenient to work with structures that have only parallel boundaries between
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layers. To address this shortcoming, junctions in which the S electrodes are placed on top

of the FN structure were studied in Chapter 6. Three different geometries were considered:

- SN-NF-NS structure, which consists of two SN electrodes connected by an NF

weak region.

- SNF-N-FNS structure, in which a N film connects SNF multilayer electrodes.

- SNF-NF-FNS structure, in which the S electrodes are located on top of the FN

structure.

In Chapter 6, the critical current of SFNS Josephson structures was calculated and

the advantages of such geometry were analyzed. The amplitude of the critical current for

an SN-FN-NS-type structure reaches the highest value compared with the other geometries

because of the lack of additional suppression of superconductivity under the electrodes from

the ferromagnetic film. The effect of finite area in SN interface of SFNS junctions with their

electrodes located on top of the FN structure, on the realization of states with negative and

positive critical current sign was studied. It was shown that, besides multiple 0-π transitions

in ramp type structures which are triggered by the variation of the distance between the

electrodes, a single 0-π transition is realized in the new geometry when the length of the

SN boundary increases. This 0-π transition exists even in SFN-N-FNS structures with

non-ferromagnetic weak link region.
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Samenvatting (Summary in Dutch)

Het hoofddoel van dit proefschrift is onderzoek en ontwikkeling van de fysische

grondslagen van fundamenteel nieuwe devices voor de nanoelektronica, spintronica en su-

pergeleidende elektronica. De supergeleidende spintronica is een zich snel ontwikkelend

gebied van de moderne nanoelektronica. Zowel de aanwezigheid van nieuwe fundamentele

effecten in structuren die ferromagnetische en supergeleidende structuren bevatten, als de

toepassing van deze effecten zijn van significant belang. De gebruiksparameters van bekende

prototypes van supergeleidende spin valves, waarmee de kritische stroom en kritische tem-

peratuur ingesteld kunnen worden, zijn erg beperkt. Daarom is het noodzakelijk om hun

functionaliteit te verbeteren door nieuwe ontwerpoplossingen te onderzoeken die gebaseerd

zijn op karakteristieke eigenschappen van het proximity-effect in S/F heterostructuren. Een

andere klasse van spinschakelaars maakt gebruik van de mogelijkheid de kritische stroom

te veranderen door voorwarden te scheppen waarbij tripletparen voorkomen. Deze triplet-

paren hebben de eigenschap dat de orde-parameter een oneven functie van de Matsubara

frequentie is. Onderzoek aan deze triplet paren, die voorkomen in meerlagenstructuren

die supergeleidende normaal geleidende en ferromagnetische lagen bevatten, ondersteunt

de ontwikkeling van deze klasse van spin valves.

In hoofdstukken 2 en 3 wordt een analyse gemaakt van de processen in Josephson

nanostructuren die bestaan uit afwisselende lagen van normale (N) en ferromagnetische

(F) metalen op basis van de microscopische theorie van de supergeleiding. Deze structuren

zijn van belang voor de ontwikkeling van een nieuw type spin valves en zogenoemde π-

juncties: Josephson juncties met een negatieve waarde van de kritische stroom IC . In de

huidige structuren is de afhankelijkheid tussen deze kritische stroom en de afstand tussen

de supergeleidende elektrodes S een gedempte oscillatie. De karakteristieke lengtes van de

demping en de oscillaties zijn van de orde van enige nanometers, wat de bruikbaarheid

van zulke structuren aanzienlijk beperkt. In hoofdstukken 2 en 3 wordt een oplossing voor

dit probleem geboden waarbij bijna tweemaal grotere karakteristieke afmetingen bereikt

worden. Ook wordt aangetoond dat zowel de grootte als het teken van de kritische stroom

ingesteld kunnen worden door de relatieve oriëntatie van de magnetisatievectoren in de
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afzonderlijke F lagen van FNF meerlagige Josephson juncties. Door dit werk krijgt het fun-

damentele probleem van de interactie tussen ferromagnetisme en supergeleiding praktische

relevantie.

In hoofdstuk 4 worden FNF structuren met een willekeurige hoek tussen de mag-

netisatie vectoren van de ferromagnetische lagen onderzocht. In zulke structuren wordt

de triplet component zichtbaar in het spectrum van supergeleidende correlaties. In hoofd-

stuk 4 wordt bewezen dat het meenemen van de tripletcomponent leidt tot een nieuw type

π-junctie. Deze junctie wordt gekenmerkt door de superpositie van twee niet oscillerende

bijdragen aan de kritische stroom. Het bestaan van zulke π-juncties kan gebruikt worden als

experimentele bevestiging van het bestaan van de tripletcomponent. Ook wordt gevonden

dat een effectieve regelbaarheid van grootte en teken van de kritische stroom in S-(FNF)-S

spin valves bereikt kan worden door kleine draaihoeken ten opzichte van de antiferromag-

netische configuratie. Dit is energetisch gunstiger dan de volledige hermagnetisatie van de

structuur.

De resultaten in hoofdstukken 2 tot en met 4 zijn verkregen voor de limiet waar de

lagen dunner zijn dan de coherentielengte in zowel het normale metaal als de ferromagneet.

In het experimentele geval wordt deze limiet gemakkelijk bereikt voor normale metalen.

Voor de ferromagnetische lagen is dit echter problematisch. Daarom wordt in hoofdstuk 5

het effect van een eindige dikte geanalyseerd. Hierbij wordt aangetoond dat de oscillerende

afhankelijkheid van de kritische stroom en de afstand tussen de supergeleidende elektrodes

behouden blijft. De periode van de oscillaties en de karakteristieke lengte van de demping

is daarbij sterk afhankelijk van de laagdikte. Het kwalitatieve gedrag van dikke films on-

derscheidt zich dus niet van de resultaten berekend in de dunnefilm limiet. Als de dikte van

de ferromagneet vergelijkbaar is met (of groter is dan) de coherentielengte dan hangen de

periodes van de oscillatie en de karakteristieke lengte van de demping niet langer af van de

laagdikte. Ook erg belangrijk is het feit dat rond de kritische afstand tussen de supergelei-

dende elektrodes (de afstand waarbij de stroom voor oneindig dikke ferromagnetische lagen

gelijk is aan nul) het teken en de grootte van de kritische stroom sterk afhankelijk zijn van

de dikte van de ferromagneet. Buiten deze kleine kritische gebieden hangen de grootte en

het teken van de kritische stroom af van de laagdikte. Deze resultaten zijn vanuit praktisch

oogpunt belangrijk, omdat dit het mogelijk maakt juncties te fabriceren waarbij de eigen-

schappen van deze juncties niet sterk beïnvloed worden door de onvermijdelijke spreiding

in de geometrie en transporteigenschappen van de structuren die inherent zijn aan ieder
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technisch proces.

De tweede belangrijke technische randvoorwaarde aan de in hoofdstukken 2 tot en

met 3 beschreven S-FN-S en S-FNF-S structuren is de noodzaak tot zijdelingse contacten

door middel van juncties van het ramp-type. Vanuit technisch oogpunt is het veel een-

voudiger om te werken met structuren waarbij alle overgangen tussen de verschillende la-

gen parallel lopen. Om aan dit problem tegemoet te komen, zijn in hoofdstuk 6 structuren

bestudeerd waarbij de juncties bovenop de FN-structuren zijn geplaatst. De volgende drie

geometrieën worden behandeld:

-SN-NF-NS structuur bestaande uit twee SN elektrodes verbonden door een zwak

NF gebied.

-SNF-N-FNS structuur, waarbij de N-laag twee meerlagen-elektrodes verbindt.

-SNF-NF-FNS structuur, waarbij de S-elektroden zich bovenop de FN-structuur

bevindt.

In hoofdstuk 6 wordt de kritische stroom van SFNS-Josephson structuren berek-

end. Hierbij worden de voordelen van de experimenteel makkelijker realiseerbare struc-

turen waarbij de S elektrodes bovenop de FN structuur geplaatst worden ten opzichte van

de ramp-type SFNS juncties gerealiseerd. De amplitude van de kritische stroom bereikt

de hoogste waarde voor de SN-FN-NS-type structuur in vergelijking met de andere geome-

trieën. Dit is omdat de supergeleiding niet extra wordt onderdrukt door de ferromagnetische

laag onder de elektrodes. Het effect van de eindige oppervlakte van de SN-overgang van

SFNS-juncties waarbij de elektrodes bovenop de FN-structuur geplaatst worden op het

voorkomen van toestanden met positieve en negatieve kritische stroom is bestudeerd. Er

is bewezen dat, in tegenstelling tot de meerdere 0− π overgangen met toenemende afstand

tussen de elektrodes voor de structuren van het ramp-type, er bij structuren met de nieuwe

geometrie slechts één 0− π overgang optreedt met toenemende lengte van de SN-overgang.

Deze 0− π overgang kan zelfs optreden in SFN-N-FNS structuren met een zwakke binding

in een niet ferromagnetisch gebied.
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